A novel Multi to Single Module for small object detection
- URL: http://arxiv.org/abs/2303.14977v1
- Date: Mon, 27 Mar 2023 08:17:22 GMT
- Title: A novel Multi to Single Module for small object detection
- Authors: Xiaohui Guo
- Abstract summary: The performance of small object detectors is often compromised by a lack of pixels and less significant features.
This paper proposes a novel the Multi to Single Module (M2S), which enhances a specific layer through improving feature extraction and refining features.
The effectiveness of the proposed method is evaluated on two datasets, VisDrone2021-DET and SeaDronesSeeV2.
- Score: 2.920753968664803
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Small object detection presents a significant challenge in computer vision
and object detection. The performance of small object detectors is often
compromised by a lack of pixels and less significant features. This issue stems
from information misalignment caused by variations in feature scale and
information loss during feature processing. In response to this challenge, this
paper proposes a novel the Multi to Single Module (M2S), which enhances a
specific layer through improving feature extraction and refining features.
Specifically, M2S includes the proposed Cross-scale Aggregation Module (CAM)
and explored Dual Relationship Module (DRM) to improve information extraction
capabilities and feature refinement effects. Moreover, this paper enhances the
accuracy of small object detection by utilizing M2S to generate an additional
detection head. The effectiveness of the proposed method is evaluated on two
datasets, VisDrone2021-DET and SeaDronesSeeV2. The experimental results
demonstrate its improved performance compared with existing methods. Compared
to the baseline model (YOLOv5s), M2S improves the accuracy by about 1.1\% on
the VisDrone2021-DET testing dataset and 15.68\% on the SeaDronesSeeV2
validation set.
Related papers
- Renormalized Connection for Scale-preferred Object Detection in Satellite Imagery [51.83786195178233]
We design a Knowledge Discovery Network (KDN) to implement the renormalization group theory in terms of efficient feature extraction.
Renormalized connection (RC) on the KDN enables synergistic focusing'' of multi-scale features.
RCs extend the multi-level feature's divide-and-conquer'' mechanism of the FPN-based detectors to a wide range of scale-preferred tasks.
arXiv Detail & Related papers (2024-09-09T13:56:22Z) - Visible and Clear: Finding Tiny Objects in Difference Map [50.54061010335082]
We introduce a self-reconstruction mechanism in the detection model, and discover the strong correlation between it and the tiny objects.
Specifically, we impose a reconstruction head in-between the neck of a detector, constructing a difference map of the reconstructed image and the input, which shows high sensitivity to tiny objects.
We further develop a Difference Map Guided Feature Enhancement (DGFE) module to make the tiny feature representation more clear.
arXiv Detail & Related papers (2024-05-18T12:22:26Z) - Better Sampling, towards Better End-to-end Small Object Detection [7.7473020808686694]
Small object detection remains unsatisfactory due to limited characteristics and high density and mutual overlap.
We propose methods enhancing sampling within an end-to-end framework.
Our model demonstrates a significant enhancement, achieving a 2.9% increase in average precision (AP) over the state-of-the-art (SOTA) on the VisDrone dataset.
arXiv Detail & Related papers (2024-05-17T04:37:44Z) - Efficient Meta-Learning Enabled Lightweight Multiscale Few-Shot Object Detection in Remote Sensing Images [15.12889076965307]
YOLOv7 one-stage detector is subjected to a novel meta-learning training framework.
This transformation allows the detector to adeptly address FSOD tasks while capitalizing on its inherent advantage of lightweight.
To validate the effectiveness of our proposed detector, we conducted performance comparisons with current state-of-the-art detectors.
arXiv Detail & Related papers (2024-04-29T04:56:52Z) - Innovative Horizons in Aerial Imagery: LSKNet Meets DiffusionDet for
Advanced Object Detection [55.2480439325792]
We present an in-depth evaluation of an object detection model that integrates the LSKNet backbone with the DiffusionDet head.
The proposed model achieves a mean average precision (MAP) of approximately 45.7%, which is a significant improvement.
This advancement underscores the effectiveness of the proposed modifications and sets a new benchmark in aerial image analysis.
arXiv Detail & Related papers (2023-11-21T19:49:13Z) - SALISA: Saliency-based Input Sampling for Efficient Video Object
Detection [58.22508131162269]
We propose SALISA, a novel non-uniform SALiency-based Input SAmpling technique for video object detection.
We show that SALISA significantly improves the detection of small objects.
arXiv Detail & Related papers (2022-04-05T17:59:51Z) - The Devil is in the Task: Exploiting Reciprocal Appearance-Localization
Features for Monocular 3D Object Detection [62.1185839286255]
Low-cost monocular 3D object detection plays a fundamental role in autonomous driving.
We introduce a Dynamic Feature Reflecting Network, named DFR-Net.
We rank 1st among all the monocular 3D object detectors in the KITTI test set.
arXiv Detail & Related papers (2021-12-28T07:31:18Z) - Progressive Multi-scale Fusion Network for RGB-D Salient Object
Detection [9.099589602551575]
We discuss about the advantages of the so-called progressive multi-scale fusion method and propose a mask-guided feature aggregation module.
The proposed framework can effectively combine the two features of different modalities and alleviate the impact of erroneous depth features.
We further introduce a mask-guided refinement module(MGRM) to complement the high-level semantic features and reduce the irrelevant features from multi-scale fusion.
arXiv Detail & Related papers (2021-06-07T20:02:39Z) - SWIPENET: Object detection in noisy underwater images [41.35601054297707]
We propose a novel Sample-WeIghted hyPEr Network (SWIPENET), and a robust training paradigm named Curriculum Multi-Class Adaboost (CMA) to address these two problems.
The backbone of SWIPENET produces multiple high resolution and semantic-rich Hyper Feature Maps, which significantly improve small object detection.
Inspired by the human education process that drives the learning from easy to hard concepts, we here propose the CMA training paradigm that first trains a clean detector which is free from the influence of noisy data.
arXiv Detail & Related papers (2020-10-19T16:41:20Z) - Underwater object detection using Invert Multi-Class Adaboost with deep
learning [37.14538666012363]
We propose a novel neural network architecture, namely Sample-WeIghted hyPEr Network (SWIPENet), for small object detection.
We show that the proposed SWIPENet+IMA framework achieves better performance in detection accuracy against several state-of-the-art object detection approaches.
arXiv Detail & Related papers (2020-05-23T15:30:38Z) - One-Shot Object Detection without Fine-Tuning [62.39210447209698]
We introduce a two-stage model consisting of a first stage Matching-FCOS network and a second stage Structure-Aware Relation Module.
We also propose novel training strategies that effectively improve detection performance.
Our method exceeds the state-of-the-art one-shot performance consistently on multiple datasets.
arXiv Detail & Related papers (2020-05-08T01:59:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.