論文の概要: "That's important, but...": How Computer Science Researchers Anticipate
Unintended Consequences of Their Research Innovations
- arxiv url: http://arxiv.org/abs/2303.15536v1
- Date: Mon, 27 Mar 2023 18:21:29 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-29 17:36:42.538654
- Title: "That's important, but...": How Computer Science Researchers Anticipate
Unintended Consequences of Their Research Innovations
- Title(参考訳): 『それは重要だが...』:コンピュータサイエンス研究者が研究革新の意図しない結果を予測する方法
- Authors: Kimberly Do, Rock Yuren Pang, Jiachen Jiang, Katharina Reinecke
- Abstract要約: 意図しない結果を考えることは一般的に重要であるが、実践されることは滅多にない。
主要な障壁は、正式なプロセスと戦略の欠如と、迅速な進歩と出版を優先する学術的な実践である。
我々は,研究プロセスの前後において,技術革新の社会的意味を日常的に探究する道を開くことを目的としている。
- 参考スコア(独自算出の注目度): 12.947525301829835
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Computer science research has led to many breakthrough innovations but has
also been scrutinized for enabling technology that has negative, unintended
consequences for society. Given the increasing discussions of ethics in the
news and among researchers, we interviewed 20 researchers in various CS
sub-disciplines to identify whether and how they consider potential unintended
consequences of their research innovations. We show that considering unintended
consequences is generally seen as important but rarely practiced. Principal
barriers are a lack of formal process and strategy as well as the academic
practice that prioritizes fast progress and publications. Drawing on these
findings, we discuss approaches to support researchers in routinely considering
unintended consequences, from bringing diverse perspectives through community
participation to increasing incentives to investigate potential consequences.
We intend for our work to pave the way for routine explorations of the societal
implications of technological innovations before, during, and after the
research process.
- Abstract(参考訳): コンピュータ科学の研究は多くの画期的な革新をもたらしたが、社会に否定的で意図しない結果をもたらす技術を可能にするために精査された。
ニュースや研究者の間で倫理に関する議論が高まりつつある中、様々なCSサブセクタの研究者20人をインタビューして、彼らの研究革新の意図せぬ結果がどう影響するかを調べた。
意図しない結果を考えることは一般的に重要であるが、実践されることは稀である。
主な障壁は、形式的なプロセスと戦略の欠如と、迅速な進歩と出版を優先する学術的実践である。
これらの知見に基づいて,コミュニティ参加を通じて多様な視点を導き,インセンティブを高め,潜在的影響を調査する研究者を支援するアプローチについて論じる。
我々は,研究プロセスの前後において,技術革新の社会的意味を日常的に探究する道を開くことを目的としている。
関連論文リスト
- Now, Later, and Lasting: Ten Priorities for AI Research, Policy, and Practice [63.20307830884542]
今後数十年は、産業革命に匹敵する人類の転換点になるかもしれない。
10年前に立ち上げられたこのプロジェクトは、複数の専門分野の専門家による永続的な研究にコミットしている。
AI技術の短期的および長期的影響の両方に対処する、アクションのための10のレコメンデーションを提供します。
論文 参考訳(メタデータ) (2024-04-06T22:18:31Z) - A Disruptive Research Playbook for Studying Disruptive Innovations [11.619658523864686]
本稿では、説得力があり社会的に関係のある研究課題を定式化するためのガイドを提供するための研究プレイブックを提案する。
私たちは、AIとAR/VRの2つの破壊的なテクノロジの影響を疑問視するために使用することができることを示しています。
論文 参考訳(メタデータ) (2024-02-20T19:13:36Z) - Academic competitions [61.592427413342975]
この章では、機械学習とその関連分野の文脈における学術的課題について調査する。
ここ数年で最も影響力のあるコンペをレビューし、知識領域における課題を分析します。
科学的な課題,その目標,主要な成果,今後の数年間の期待を概観する。
論文 参考訳(メタデータ) (2023-12-01T01:01:04Z) - Responsible AI Considerations in Text Summarization Research: A Review
of Current Practices [89.85174013619883]
私たちは、責任あるAIコミュニティがほとんど見落としている共通のNLPタスクである、テキスト要約に重点を置いています。
我々は,2020-2022年に出版されたACLアンソロジーから333の要約論文の多段階的質的分析を行った。
私たちは、どの、どの、どの責任あるAI問題がカバーされているか、どの関係するステークホルダーが考慮されているか、そして、述べられた研究目標と実現された研究目標のミスマッチに焦点を合わせます。
論文 参考訳(メタデータ) (2023-11-18T15:35:36Z) - Human-Centered Responsible Artificial Intelligence: Current & Future
Trends [76.94037394832931]
近年、CHIコミュニティは人間中心のレスポンシブル人工知能の研究において著しい成長を遂げている。
この研究はすべて、人権と倫理に根ざしたまま、人類に利益をもたらすAIを開発し、AIの潜在的な害を減らすことを目的としている。
本研究グループでは,これらのトピックに関心のある学術・産業の研究者を集結させ,現在の研究動向と今後の研究動向を地図化することを目的とする。
論文 参考訳(メタデータ) (2023-02-16T08:59:42Z) - On the importance of AI research beyond disciplines [7.022779279820803]
技術が社会に与える影響を理解するためには学際的知識を受け入れることが不可欠である。
目標は、多様性を尊重し、創造し、批判し、新しい概念的および理論的な枠組みを開発する規律を超えて研究環境を育むことである。
論文 参考訳(メタデータ) (2023-02-13T19:39:37Z) - Fairness in Recommender Systems: Research Landscape and Future
Directions [119.67643184567623]
本稿は,近年の地域におけるフェアネスの概念と概念について概観する。
この分野での研究が現在どのように行われているのかを概観する。
全体として、最近の研究成果の分析は、ある研究のギャップを示している。
論文 参考訳(メタデータ) (2022-05-23T08:34:25Z) - The Privatization of AI Research(-ers): Causes and Potential
Consequences -- From university-industry interaction to public research
brain-drain? [0.0]
民間部門は、基本人工知能(AI)研究開発においてますます重要な役割を担っている。
この現象は、学術から産業への研究者の脳ドレインの認識に反映されている。
学界から業界、特にエリート機関からGoogle、Microsoft、Facebookといったテクノロジー企業への研究者の流入が増加しています。
論文 参考訳(メタデータ) (2021-02-02T18:02:41Z) - Nose to Glass: Looking In to Get Beyond [0.0]
責任ある人工知能を強化するというバナーの下で研究が増えている。
研究の目的は、アルゴリズムシステムの展開によって引き起こされる害に対処し、緩和し、最終的には軽減することである。
しかし、そのようなツールの実装は依然として少ない。
論文 参考訳(メタデータ) (2020-11-26T06:51:45Z) - Learnings from Frontier Development Lab and SpaceML -- AI Accelerators
for NASA and ESA [57.06643156253045]
AIとML技術による研究は、しばしば非同期の目標とタイムラインを備えたさまざまな設定で動作します。
我々は、NASAとESAの民間パートナーシップの下で、AIアクセラレータであるFrontier Development Lab(FDL)のケーススタディを実行する。
FDL研究は、AI研究の責任ある開発、実行、普及に基礎を置く原則的な実践に従う。
論文 参考訳(メタデータ) (2020-11-09T21:23:03Z) - Evolving Methods for Evaluating and Disseminating Computing Research [4.0318506932466445]
社会と技術の動向は、コンピュータ研究の評価と普及の方法を大きく変えた。
会議や雑誌などのレビューや出版のための伝統的な会場は、過去には効果的に機能していた。
多くのコンファレンスでは応募者数が大幅に増加した。
研究思想の普及は、arXiv.orgやソーシャルメディアなどの出版の場を通じて劇的に進んでいる。
論文 参考訳(メタデータ) (2020-07-02T16:50:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。