論文の概要: Edge Selection and Clustering for Federated Learning in Optical
Inter-LEO Satellite Constellation
- arxiv url: http://arxiv.org/abs/2303.16071v1
- Date: Sat, 25 Mar 2023 04:24:16 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-29 14:41:54.025438
- Title: Edge Selection and Clustering for Federated Learning in Optical
Inter-LEO Satellite Constellation
- Title(参考訳): 光leo衛星星座におけるフェデレーション学習のためのエッジ選択とクラスタリング
- Authors: Chih-Yu Chen, Li-Hsiang Shen, Kai-Ten Feng, Lie-Liang Yang, and
Jen-Ming Wu
- Abstract要約: 低地球軌道(LEO)衛星は、様々な地球観測ミッションのために順調に展開されている。
伝統的に、データトレーニングプロセスは地上クラウドサーバで実行される。
我々はLEO衛星コンステレーション(FedLEO)上での協調学習を提案している。
- 参考スコア(独自算出の注目度): 12.489681058742358
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Low-Earth orbit (LEO) satellites have been prosperously deployed for various
Earth observation missions due to its capability of collecting a large amount
of image or sensor data. However, traditionally, the data training process is
performed in the terrestrial cloud server, which leads to a high transmission
overhead. With the recent development of LEO, it is more imperative to provide
ultra-dense LEO constellation with enhanced on-board computation capability.
Benefited from it, we have proposed a collaborative federated learning over LEO
satellite constellation (FedLEO). We allocate the entire process on LEOs with
low payload inter-satellite transmissions, whilst the low-delay terrestrial
gateway server (GS) only takes care for initial signal controlling. The GS
initially selects an LEO server, whereas its LEO clients are all determined by
clustering mechanism and communication capability through the optical
inter-satellite links (ISLs). The re-clustering of changing LEO server will be
executed once with low communication quality of FedLEO. In the simulations, we
have numerically analyzed the proposed FedLEO under practical Walker-based LEO
constellation configurations along with MNIST training dataset for
classification mission. The proposed FedLEO outperforms the conventional
centralized and distributed architectures with higher classification accuracy
as well as comparably lower latency of joint communication and computing.
- Abstract(参考訳): 低地球軌道(LEO)衛星は、大量の画像やセンサーデータを収集できるため、様々な地球観測ミッションのために順調に展開されている。
しかしながら、伝統的に、データトレーニングプロセスは地上のクラウドサーバで実行されるため、送信オーバーヘッドが高くなる。
近年のLEOの発展により、超高密度LEOコンステレーションを車載計算能力の強化で実現することが不可欠である。
そこで我々は、LEO衛星コンステレーション(FedLEO)上での協調的な連合学習を提案する。
我々は、低遅延地上ゲートウェイサーバ(GS)が初期信号制御のみを行うのに対し、低ペイロードの衛星間伝送でLEOに全処理を割り当てる。
GSは当初LEOサーバを選択し、LEOクライアントは光衛星間リンク(ISL)を介してクラスタリング機構と通信能力によって決定される。
変更するLEOサーバの再クラスタ化は、FedLEOの通信品質が低い場合に一度実行される。
シミュレーションでは,実際のウォーカー型LEO星座構成とMNISTによる分類ミッションのトレーニングデータセットを用いて,提案したFedLEOを数値解析した。
提案するfeedleoは、従来の集中型および分散型のアーキテクチャよりも高い分類精度と、統合通信とコンピューティングのレイテンシーを両立するほど低めている。
関連論文リスト
- Large Language Models for Base Station Siting: Intelligent Deployment based on Prompt or Agent [62.16747639440893]
大規模言語モデル(LLM)とその関連技術は、特に迅速な工学とエージェント工学の領域において進歩している。
このアプローチは、人間の経験と知識をこれらの洗練されたLLMに注入するために、巧妙なプロンプトの戦略的利用を必要とする。
この統合は、サービスとしての人工知能(AI)と、より容易なAIの将来のパラダイムを表している。
論文 参考訳(メタデータ) (2024-08-07T08:43:32Z) - Satellite Federated Edge Learning: Architecture Design and Convergence Analysis [47.057886812985984]
本稿では,FEDMEGAという新しいFEELアルゴリズムを提案する。
軌道内モデルアグリゲーションのための衛星間リンク(ISL)を統合することにより、提案アルゴリズムは低データレートと断続的なGSLの使用を著しく削減する。
提案手法は,環全リデューサに基づく軌道内アグリゲーション機構と,グローバルモデルアグリゲーションのためのネットワークフローベースのトランスミッションスキームを組み合わせたものである。
論文 参考訳(メタデータ) (2024-04-02T11:59:58Z) - Privacy-Aware Spectrum Pricing and Power Control Optimization for LEO Satellite Internet-of-Things [14.706902417174039]
LEO IoTのためのハイブリッドスペクトル価格と電力制御フレームワークを提案する。
まず、LEO衛星システムのための局所的な深層強化学習アルゴリズムを設計し、収益最大化価格と電力制御方式を学習する。
また、FLのグローバルモデル集約フェーズで使用される評判に基づくブロックチェーンを提案する。
論文 参考訳(メタデータ) (2024-04-01T09:15:48Z) - Stitching Satellites to the Edge: Pervasive and Efficient Federated LEO Satellite Learning [1.3121410433987561]
本稿では,衛星が大規模機械学習(ML)タスクを効率的に実行できるようにする新しいFL-SECフレームワークを提案する。
主な構成要素は、余分な衛星画像を特定して排除するディビジョン・アンド・コンカーによるパーソナライズドラーニングと、軌道毎に集約された「軌道モデル」を生成し、地上局に送る前に再訓練する軌道モデル再訓練である。
我々のアプローチではFL収束時間が30倍近く減少し、衛星のエネルギー消費は1.38ワットまで減少し、例外的な精度は96%まで維持される。
論文 参考訳(メタデータ) (2024-01-28T02:01:26Z) - FedSN: A Federated Learning Framework over Heterogeneous LEO Satellite Networks [18.213174641216884]
多数の低軌道軌道(LEO)衛星が打ち上げられ、SpaceXなどの商業企業によって宇宙に投入された。
LEO衛星が搭載するマルチモーダルセンサにより、通信だけでなく、空間変調認識やリモートセンシング画像分類など、さまざまな機械学習アプリケーションにも機能する。
本稿では,これらの課題に対処するための一般FLフレームワークとしてFedSNを提案し,LEO衛星上でのデータ多様性について検討する。
論文 参考訳(メタデータ) (2023-11-02T14:47:06Z) - Optimizing Federated Learning in LEO Satellite Constellations via
Intra-Plane Model Propagation and Sink Satellite Scheduling [3.096615629099617]
衛星エッジコンピューティング(SEC)は、各衛星がMLモデルをオンボードで訓練し、モデルのみを地上局にアップロードすることを可能にする。
本稿では、既存のFLベースのソリューションの制限(緩やかな収束)を克服する新しいFLフレームワークであるFedLEOを提案する。
以上の結果から,FedLEO は FL の収束を著しく促進するが,実際にモデル精度を大幅に向上させる。
論文 参考訳(メタデータ) (2023-02-27T00:32:01Z) - On the Effective Usage of Priors in RSS-based Localization [56.68864078417909]
本稿では、受信信号強度(RSS)指紋と畳み込みニューラルネットワークに基づくアルゴリズムLocUNetを提案する。
本稿では,密集市街地における局所化問題について検討する。
まず,LocUNetがRx位置やRxの事前分布を学習し,トレーニングデータから送信者(Tx)アソシエーションの好みを学習し,その性能を評価できることを示す。
論文 参考訳(メタデータ) (2022-11-28T00:31:02Z) - Federated learning for LEO constellations via inter-HAP links [0.0]
ローアース・オービット(LEO)衛星星座は近年、急速に展開している。
このような応用に機械学習(ML)を適用するには、画像などの衛星データを地上局(GS)にダウンロードする従来の方法は望ましいものではない。
既存のFLソリューションは、過剰収束遅延や信頼できない無線チャネルといった大きな課題のために、そのようなLEOコンステレーションのシナリオには適さないことを示す。
論文 参考訳(メタデータ) (2022-05-15T08:22:52Z) - Learning Emergent Random Access Protocol for LEO Satellite Networks [51.575090080749554]
創発的ランダムアクセスチャネルプロトコル(eRACH)と呼ばれるLEO SATネットワークのための新しい許可なしランダムアクセスソリューションを提案する。
eRACHは、非定常ネットワーク環境との相互作用によって生じるモデルフリーなアプローチである。
RACHと比較して,提案するeRACHは平均ネットワークスループットが54.6%向上することを示す。
論文 参考訳(メタデータ) (2021-12-03T07:44:45Z) - Deep Learning Aided Routing for Space-Air-Ground Integrated Networks
Relying on Real Satellite, Flight, and Shipping Data [79.96177511319713]
現在の海上通信は主に単なる送信資源を持つ衛星に依存しており、現代の地上無線ネットワークよりも性能が劣っている。
大陸横断航空輸送の増加に伴い、商業旅客機に依存した航空アドホックネットワークという有望な概念は、空対地およびマルチホップ空対空リンクを介して衛星ベースの海上通信を強化する可能性がある。
低軌道衛星コンステレーション、旅客機、地上基地局、船舶がそれぞれ宇宙、航空、船舶として機能する、ユビキタスな海上通信を支援するための宇宙地上統合ネットワーク(SAGIN)を提案する。
論文 参考訳(メタデータ) (2021-10-28T14:12:10Z) - Integrating LEO Satellite and UAV Relaying via Reinforcement Learning
for Non-Terrestrial Networks [51.05735925326235]
低軌道軌道(LEO)衛星のメガコンステレーションは、低レイテンシで長距離通信を可能にする可能性がある。
軌道上の星座から選択されたLEO衛星を用いて、2つの遠距離地上端末間でパケットを転送する問題について検討する。
エンドツーエンドのデータレートを最大化するためには、衛星アソシエーションとHAPロケーションを最適化する必要がある。
本稿では, 深部強化学習(DRL)と新しい動作次元低減技術を用いてこの問題に対処する。
論文 参考訳(メタデータ) (2020-05-26T05:39:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。