論文の概要: Practical solutions to the relative pose of three calibrated cameras
- arxiv url: http://arxiv.org/abs/2303.16078v4
- Date: Tue, 29 Apr 2025 12:42:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:51.477822
- Title: Practical solutions to the relative pose of three calibrated cameras
- Title(参考訳): 3台のキャリブレーションカメラの相対ポーズに対する実用的解法
- Authors: Charalambos Tzamos, Viktor Kocur, Yaqing Ding, Daniel Barath, Zuzana Berger Haladova, Torsten Sattler, Zuzana Kukelova,
- Abstract要約: 4点対応から3つのキャリブレーションカメラの相対的なポーズを推定する難易度問題について検討する。
提案手法は, 4つの対応を用いて, 最初の2つのビューの近似幾何を推定する簡単なアイデアに基づく, この問題に対する新しい効率的な解を提案する。
- 参考スコア(独自算出の注目度): 59.0302033761239
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the challenging problem of estimating the relative pose of three calibrated cameras from four point correspondences. We propose novel efficient solutions to this problem that are based on the simple idea of using four correspondences to estimate an approximate geometry of the first two views. We model this geometry either as an affine or a fully perspective geometry estimated using one additional approximate correspondence. We generate such an approximate correspondence using a very simple and efficient strategy, where the new point is the mean point of three corresponding input points. The new solvers are efficient and easy to implement, since they are based on existing efficient minimal solvers, i.e., the 4-point affine fundamental matrix, the well-known 5-point relative pose solver, and the P3P solver. Extensive experiments on real data show that the proposed solvers, when properly coupled with local optimization, achieve state-of-the-art results, with the novel solver based on approximate mean-point correspondences being more robust and accurate than the affine-based solver.
- Abstract(参考訳): 4点対応から3つのキャリブレーションカメラの相対的なポーズを推定する難易度問題について検討する。
提案手法は, 4つの対応を用いて, 最初の2つのビューの近似幾何を推定する簡単なアイデアに基づく, この問題に対する新しい効率的な解を提案する。
我々は、この幾何をアフィンまたは1つの追加の近似対応を用いて推定された全視点幾何としてモデル化する。
我々は、新しい点が3つの対応する入力点の平均点となる非常に単純で効率的な戦略を用いて、そのような近似対応を生成する。
新しい解法は、4点アフィン基本行列、よく知られた5点相対ポーズ解法、およびP3P解法に基づくため、効率的で実装が容易である。
実データに対する大規模な実験により,提案した解法が局所最適化と適切に結合すると,近似平均点対応に基づく新しい解法がアフィンベースの解法よりも堅牢で精度が高いことを示す。
関連論文リスト
- A Framework for Reducing the Complexity of Geometric Vision Problems and its Application to Two-View Triangulation with Approximation Bounds [14.419727000332717]
三角測量は、複数の画像にわたるノイズの多い2次元投影から3次元点を推定するタスクである。
本稿では,再投射誤差を最小限に抑えるために使用されるコスト関数の再重み付けにより,幾何学的視覚問題の計算複雑性を低減するための新しいフレームワークを提案する。
この研究は2次元三角測量に焦点を当てているが、このフレームワークは他の幾何学的視覚問題に一般化している。
論文 参考訳(メタデータ) (2025-03-11T08:00:51Z) - SPARE: Symmetrized Point-to-Plane Distance for Robust Non-Rigid Registration [76.40993825836222]
本研究では,SPAREを提案する。SPAREは,非剛性登録のための対称化点-平面間距離を用いた新しい定式化である。
提案手法は, 厳密でない登録問題の精度を大幅に向上し, 比較的高い解効率を維持する。
論文 参考訳(メタデータ) (2024-05-30T15:55:04Z) - PoseGravity: Pose Estimation from Points and Lines with Axis Prior [3.5687541347524245]
本稿では,カメラの回転行列の軸が与えられた絶対的なカメラポーズを推定するアルゴリズムを提案する。
この問題はハイパーボラと単位円の交点を見つけることで効率よく解ける。
論文 参考訳(メタデータ) (2024-05-21T09:55:56Z) - Differentiable Registration of Images and LiDAR Point Clouds with
VoxelPoint-to-Pixel Matching [58.10418136917358]
カメラからの2D画像とLiDARからの3Dポイントクラウドの間のクロスモダリティ登録は、コンピュータビジョンとロボットトレーニングにおいて重要な課題である。
ニューラルネットワークで学習した点パターンと画素パターンのマッチングによる2次元3次元対応の推定
我々は、異なる潜在画素空間を介して3次元特徴を表現するために、構造化されたモダリティマッチングソルバを学習する。
論文 参考訳(メタデータ) (2023-12-07T05:46:10Z) - Vanishing Point Estimation in Uncalibrated Images with Prior Gravity
Direction [82.72686460985297]
我々はマンハッタンのフレームを推定する問題に取り組む。
2つの新しい2行解法が導出され、そのうちの1つは既存の解法に影響を与える特異点に悩まされない。
また、局所最適化の性能を高めるために、任意の行で実行される新しい最小でないメソッドを設計する。
論文 参考訳(メタデータ) (2023-08-21T13:03:25Z) - Quantity-Aware Coarse-to-Fine Correspondence for Image-to-Point Cloud
Registration [4.954184310509112]
Image-to-point cloud registrationは、RGBイメージと参照ポイントクラウドの間の相対カメラのポーズを決定することを目的としている。
個々の点と画素とのマッチングは、モダリティギャップによって本質的に曖昧である。
本稿では,局所点集合と画素パッチ間の量認識対応を捉える枠組みを提案する。
論文 参考訳(メタデータ) (2023-07-14T03:55:54Z) - CheckerPose: Progressive Dense Keypoint Localization for Object Pose
Estimation with Graph Neural Network [66.24726878647543]
単一のRGB画像から固い物体の6-DoFのポーズを推定することは、非常に難しい課題である。
近年の研究では、高密度対応型解の大きな可能性を示している。
そこで本研究では,CheckerPoseというポーズ推定アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-03-29T17:30:53Z) - Relative Pose from SIFT Features [50.81749304115036]
基本行列の未知元と向きとスケールに関する新しい線形制約を導出する。
提案した制約は、合成環境における多くの問題と、80000以上の画像ペア上で公開されている実世界のデータセットでテストされる。
論文 参考訳(メタデータ) (2022-03-15T14:16:39Z) - SASA: Semantics-Augmented Set Abstraction for Point-based 3D Object
Detection [78.90102636266276]
SASA(Semantics-Augmented Set Abstraction)と呼ばれる新しい集合抽象化手法を提案する。
そこで本研究では, 推定点前景スコアに基づいて, より重要な前景点の維持を支援するセマンティックス誘導点サンプリングアルゴリズムを提案する。
実際には、SASAは、前景オブジェクトに関連する貴重な点を識別し、ポイントベースの3D検出のための特徴学習を改善するのに有効である。
論文 参考訳(メタデータ) (2022-01-06T08:54:47Z) - Robust Extrinsic Symmetry Estimation in 3D Point Clouds [4.416484585765027]
3次元点雲で表される物体の反射対称性面を検出することは、3次元コンピュータビジョンと幾何学処理の基本的な問題である。
本稿では,外乱や欠落部分に対して頑健な反射対称性の平面に対する統計的推定器に基づくアプローチを提案する。
論文 参考訳(メタデータ) (2021-09-21T03:09:51Z) - Calibrated and Partially Calibrated Semi-Generalized Homographies [65.29477277713205]
視点と一般化カメラから半一般化ホモグラフィーを推定するための最初の最小解を提案する。
提案した解法は、多くの合成および実世界の実験で実証されたように安定かつ効率的である。
論文 参考訳(メタデータ) (2021-03-11T08:56:24Z) - Generalized Pose-and-Scale Estimation using 4-Point Congruence
Constraints [5.063728016437489]
gP4Pcは、一般的なカメラの絶対的なポーズを、対応する4つの3Dポイント・アンド・レイペアから未知の内部スケールで計算する新しい方法である。
実データと合成データを用いた実験により,gP4PcはSACRANフレームワーク内での使用時の総実行時間において最速の手法であることが示された。
論文 参考訳(メタデータ) (2020-11-27T16:30:19Z) - Solving the Blind Perspective-n-Point Problem End-To-End With Robust
Differentiable Geometric Optimization [44.85008070868851]
Blind Perspective-n-Pointは、シーンに対するカメラの位置を推定する問題である。
本稿では,視覚幾何学的問題を効果的に解くための,最初の完全エンドツーエンドのトレーニング可能なネットワークを提案する。
論文 参考訳(メタデータ) (2020-07-29T06:35:45Z) - Making Affine Correspondences Work in Camera Geometry Computation [62.7633180470428]
局所的な特徴は、ポイント・ツー・ポイント対応ではなく、リージョン・ツー・リージョンを提供する。
本稿では,全モデル推定パイプラインにおいて,地域間マッチングを効果的に活用するためのガイドラインを提案する。
実験により、アフィンソルバはより高速な実行時にポイントベースソルバに匹敵する精度を達成できることが示された。
論文 参考訳(メタデータ) (2020-07-20T12:07:48Z) - Learning 2D-3D Correspondences To Solve The Blind Perspective-n-Point
Problem [98.92148855291363]
本稿では、6-DoFの絶対カメラポーズ2D--3D対応を同時に解決するディープCNNモデルを提案する。
実データとシミュレーションデータの両方でテストした結果,本手法は既存手法よりも大幅に優れていた。
論文 参考訳(メタデータ) (2020-03-15T04:17:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。