論文の概要: Hard Nominal Example-aware Template Mutual Matching for Industrial
Anomaly Detection
- arxiv url: http://arxiv.org/abs/2303.16191v1
- Date: Tue, 28 Mar 2023 17:54:56 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-29 13:53:12.028505
- Title: Hard Nominal Example-aware Template Mutual Matching for Industrial
Anomaly Detection
- Title(参考訳): 産業異常検出のためのハードノミナル例認識テンプレート相互マッチング
- Authors: Zixuan Chen, jianhuang Lai, Lingxiao Yang, Xiaohua Xie
- Abstract要約: textbfHard Nominal textbfExample-aware textbfTemplate textbfMutual textbfMatching (HETMM)
textitHETMMは、厳密なプロトタイプベースの決定境界を構築することを目的としており、ハードノミナルな例と異常を正確に区別することができる。
- 参考スコア(独自算出の注目度): 74.9262846410559
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Anomaly detectors are widely used in industrial production to detect and
localize unknown defects in query images. These detectors are trained on
nominal images and have shown success in distinguishing anomalies from most
normal samples. However, hard-nominal examples are scattered and far apart from
most normalities, they are often mistaken for anomalies by existing anomaly
detectors. To address this problem, we propose a simple yet efficient method:
\textbf{H}ard Nominal \textbf{E}xample-aware \textbf{T}emplate \textbf{M}utual
\textbf{M}atching (HETMM). Specifically, \textit{HETMM} aims to construct a
robust prototype-based decision boundary, which can precisely distinguish
between hard-nominal examples and anomalies, yielding fewer false-positive and
missed-detection rates. Moreover, \textit{HETMM} mutually explores the
anomalies in two directions between queries and the template set, and thus it
is capable to capture the logical anomalies. This is a significant advantage
over most anomaly detectors that frequently fail to detect logical anomalies.
Additionally, to meet the speed-accuracy demands, we further propose
\textbf{P}ixel-level \textbf{T}emplate \textbf{S}election (PTS) to streamline
the original template set. \textit{PTS} selects cluster centres and
hard-nominal examples to form a tiny set, maintaining the original decision
boundaries. Comprehensive experiments on five real-world datasets demonstrate
that our methods yield outperformance than existing advances under the
real-time inference speed. Furthermore, \textit{HETMM} can be hot-updated by
inserting novel samples, which may promptly address some incremental learning
issues.
- Abstract(参考訳): 異常検出器は、クエリー画像の未知の欠陥を検出し、ローカライズするために工業生産で広く使われている。
これらの検出器は名目上の画像で訓練され、ほとんどの正常なサンプルから異常を区別することに成功した。
しかし、ハード・ノミナルな例は散在しており、ほとんどの正常さとはかけ離れており、しばしば既存の異常検出器によって異常と誤認される。
この問題に対処するために、単純で効率的な方法を提案する: \textbf{H}ard Nominal \textbf{E}xample-aware \textbf{T}emplate \textbf{M}utual \textbf{M}atching (HETMM)。
具体的には、‘textit{HETMM} は、厳密なプロトタイプベースの決定境界を構築することを目的としている。
さらに、\textit{hetmm} はクエリとテンプレートセットの間の2方向の異常を相互に探索するので、論理的な異常を捉えることができる。
これは、しばしば論理的な異常を検出するのに失敗するほとんどの異常検出器に対する大きな利点である。
さらに、速度精度の要求を満たすために、元のテンプレートセットを合理化するために、さらに \textbf{P}ixel-level \textbf{T}emplate \textbf{S}election (PTS)を提案する。
\textit{PTS} はクラスタセンターとハードノミナルな例を選択して小さな集合を形成し、元の決定境界を維持する。
5つの実世界のデータセットに関する包括的実験は、我々の手法が、リアルタイム推論速度の下で既存の進歩よりも性能が劣ることを示している。
さらに、新しいサンプルを挿入することで、 \textit{hetmm} をホットアップデートすることができる。
関連論文リスト
- MeLIAD: Interpretable Few-Shot Anomaly Detection with Metric Learning and Entropy-based Scoring [2.394081903745099]
本稿では,新たな異常検出手法であるMeLIADを提案する。
MeLIADはメートル法学習に基づいており、真の異常の事前分布仮定に頼ることなく、設計による解釈可能性を達成する。
解釈可能性の定量的かつ定性的な評価を含む5つの公開ベンチマークデータセットの実験は、MeLIADが異常検出とローカライゼーション性能の改善を達成することを実証している。
論文 参考訳(メタデータ) (2024-09-20T16:01:43Z) - AnomalyLLM: Few-shot Anomaly Edge Detection for Dynamic Graphs using Large Language Models [19.36513465638031]
AnomalyLLMは、いくつかのラベル付きサンプルの情報を統合して、数発の異常検出を実現する、コンテキスト内学習フレームワークである。
4つのデータセットの実験により、AnomalyLLMは、数発の異常検出のパフォーマンスを著しく改善できるだけでなく、モデルパラメータを更新することなく、新しい異常に対して優れた結果を得ることができることが明らかになった。
論文 参考訳(メタデータ) (2024-05-13T10:37:50Z) - MAPL: Memory Augmentation and Pseudo-Labeling for Semi-Supervised Anomaly Detection [0.0]
メモリ拡張(Memory Augmentation)と擬似ラベル(Pseudo-Labeling, MAPL)と呼ばれる, 産業環境における表面欠陥検出のための新しいメソドロジーを導入する。
この手法は、まず異常シミュレーション戦略を導入し、希少または未知の異常型を認識するモデルの能力を著しく改善する。
入力データから直接異常領域を識別するために、MAPLによってエンドツーエンドの学習フレームワークが使用される。
論文 参考訳(メタデータ) (2024-05-10T02:26:35Z) - MLAD: A Unified Model for Multi-system Log Anomaly Detection [35.68387377240593]
複数のシステムにまたがる意味的関係推論を組み込んだ新しい異常検出モデルMLADを提案する。
具体的には、Sentence-bertを用いてログシーケンス間の類似性を捉え、それらを高次元の学習可能な意味ベクトルに変換する。
我々は,各キーワードのシーケンスにおける意義を識別し,マルチシステムデータセットの全体分布をモデル化するために,アテンション層の公式を改訂する。
論文 参考訳(メタデータ) (2024-01-15T12:51:13Z) - Generating and Reweighting Dense Contrastive Patterns for Unsupervised
Anomaly Detection [59.34318192698142]
我々は、先行のない異常発生パラダイムを導入し、GRADと呼ばれる革新的な教師なし異常検出フレームワークを開発した。
PatchDiffは、様々な種類の異常パターンを効果的に公開する。
MVTec ADとMVTec LOCOデータセットの両方の実験も、前述の観測をサポートする。
論文 参考訳(メタデータ) (2023-12-26T07:08:06Z) - Token-Level Adversarial Prompt Detection Based on Perplexity Measures
and Contextual Information [67.78183175605761]
大規模言語モデルは、敵の迅速な攻撃に影響を受けやすい。
この脆弱性は、LLMの堅牢性と信頼性に関する重要な懸念を浮き彫りにしている。
トークンレベルで敵のプロンプトを検出するための新しい手法を提案する。
論文 参考訳(メタデータ) (2023-11-20T03:17:21Z) - Self-Supervised Training with Autoencoders for Visual Anomaly Detection [61.62861063776813]
我々は, 正規サンプルの分布を低次元多様体で支持する異常検出において, 特定のユースケースに焦点を当てた。
我々は、訓練中に識別情報を活用する自己指導型学習体制に適応するが、通常の例のサブ多様体に焦点をあてる。
製造領域における視覚異常検出のための挑戦的なベンチマークであるMVTec ADデータセットで、最先端の新たな結果を達成する。
論文 参考訳(メタデータ) (2022-06-23T14:16:30Z) - Reference-based Defect Detection Network [57.89399576743665]
最初の問題はテクスチャシフトであり、これはトレーニングされた欠陥検出モデルが目に見えないテクスチャの影響を受けやすいことを意味する。
第2の問題は部分的な視覚的混乱であり、部分的な欠陥ボックスが完全なボックスと視覚的に類似していることを示している。
本稿では,これら2つの問題に対処する参照型欠陥検出ネットワーク(RDDN)を提案する。
論文 参考訳(メタデータ) (2021-08-10T05:44:23Z) - Explainable Deep Few-shot Anomaly Detection with Deviation Networks [123.46611927225963]
本稿では,弱い教師付き異常検出フレームワークを導入し,検出モデルを訓練する。
提案手法は,ラベル付き異常と事前確率を活用することにより,識別正規性を学習する。
我々のモデルはサンプル効率が高く頑健であり、クローズドセットとオープンセットの両方の設定において最先端の競合手法よりもはるかに優れている。
論文 参考訳(メタデータ) (2021-08-01T14:33:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。