Enhancement of Quantum Sensing in a Cavity Optomechanical System around
Quantum Critical Point
- URL: http://arxiv.org/abs/2303.16486v2
- Date: Wed, 13 Sep 2023 03:33:53 GMT
- Title: Enhancement of Quantum Sensing in a Cavity Optomechanical System around
Quantum Critical Point
- Authors: Shao-Bo Tang, Hao Qin, D.-Y. Wang, Kaifeng Cui, S.-L. Su, L.-L. Yan,
Gang Chen
- Abstract summary: We present a quantum phase transition in the coupling cavity-mechanical oscillator system when the coupling strength crosses a critical point, determined by the effective detuning of cavity and frequency of mechanical mode.
This result provides an alternative method to enhance the quantum sensing of some physical quantities, such as mass, charge, and weak force, in a large mass system.
- Score: 3.0770434477273647
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The precision of quantum sensing could be improved by exploiting quantum
phase transitions, where the physical quantity tends to diverge when the system
approaches the quantum critical point. This critical enhancement phenomenon has
been applied to the quantum Rabi model in a dynamic framework, showing a
promising sensing enhancement without the need for complex initial state
preparation. In this work, we present a quantum phase transition in the
coupling cavity-mechanical oscillator system when the coupling strength crosses
a critical point, determined by the effective detuning of cavity and frequency
of mechanical mode. By utilizing this critical phenomenon, we obtain a
prominent enhancement of quantum sensing, such as the position and momentum of
the mechanical oscillator. This result provides an alternative method to
enhance the quantum sensing of some physical quantities, such as mass, charge,
and weak force, in a large mass system.
Related papers
- Thermalization and Criticality on an Analog-Digital Quantum Simulator [133.58336306417294]
We present a quantum simulator comprising 69 superconducting qubits which supports both universal quantum gates and high-fidelity analog evolution.
We observe signatures of the classical Kosterlitz-Thouless phase transition, as well as strong deviations from Kibble-Zurek scaling predictions.
We digitally prepare the system in pairwise-entangled dimer states and image the transport of energy and vorticity during thermalization.
arXiv Detail & Related papers (2024-05-27T17:40:39Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Critical quantum sensing based on the Jaynes-Cummings model with a
squeezing drive [6.284204043713657]
Quantum sensing improves the accuracy of measurements of relevant parameters by exploiting the unique properties of quantum systems.
In this work, we explore an alternative to construct the analog of the QRM for the sensing, exploiting the criticality appearing in the Jaynes-Cummings (JC) model whose bosonic field is parametrically driven.
arXiv Detail & Related papers (2022-12-21T04:40:34Z) - Thermally-induced qubit coherence in quantum electromechanics [0.0]
Coherence is the ability of a quantum system to be in a superposition of quantum states.
We show that quantum coherence is created in a composite system solely from the interaction of the parts.
arXiv Detail & Related papers (2022-06-09T13:33:45Z) - Parity measurement in the strong dispersive regime of circuit quantum
acoustodynamics [1.7673364730995766]
We show direct measurements of the phonon number distribution and parity of nonclassical mechanical states.
These measurements are some of the basic building blocks for constructing acoustic quantum memories and processors.
Our results open the door to performing even more complex quantum algorithms using mechanical systems.
arXiv Detail & Related papers (2021-10-01T08:40:26Z) - Efficient criteria of quantumness for a large system of qubits [58.720142291102135]
We discuss the dimensionless combinations of basic parameters of large, partially quantum coherent systems.
Based on analytical and numerical calculations, we suggest one such number for a system of qubits undergoing adiabatic evolution.
arXiv Detail & Related papers (2021-08-30T23:50:05Z) - Sensing quantum chaos through the non-unitary geometric phase [62.997667081978825]
We propose a decoherent mechanism for sensing quantum chaos.
The chaotic nature of a many-body quantum system is sensed by studying the implications that the system produces in the long-time dynamics of a probe coupled to it.
arXiv Detail & Related papers (2021-04-13T17:24:08Z) - Dynamic framework for criticality-enhanced quantum sensing [1.819932604590499]
Quantum criticality, as a fascinating quantum phenomenon, may provide significant advantages for quantum sensing.
We propose a framework for quantum sensing with a family of Hamiltonians that undergo quantum phase transitions.
It is expected to provide a route towards the implementation of criticality-enhanced quantum sensing.
arXiv Detail & Related papers (2020-08-26T05:36:46Z) - Quantum Non-equilibrium Many-Body Spin-Photon Systems [91.3755431537592]
dissertation concerns the quantum dynamics of strongly-correlated quantum systems in out-of-equilibrium states.
Our main results can be summarized in three parts: Signature of Critical Dynamics, Driven Dicke Model as a Test-bed of Ultra-Strong Coupling, and Beyond the Kibble-Zurek Mechanism.
arXiv Detail & Related papers (2020-07-23T19:05:56Z) - Detecting dynamical quantum phase transition via out-of-time-order
correlations in a solid-state quantum simulator [12.059058714600607]
We develop and experimentally demonstrate that out-of-time-order correlators can be used to detect nonoequilibrium phase transitions in the transverse field Ising model.
Further applications of this protocol could enable studies other of exotic phenomena such as many body localization, and tests of the holographic duality between quantum and gravitational systems.
arXiv Detail & Related papers (2020-01-17T14:28:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.