Improving Object Detection in Medical Image Analysis through Multiple
Expert Annotators: An Empirical Investigation
- URL: http://arxiv.org/abs/2303.16507v1
- Date: Wed, 29 Mar 2023 07:34:20 GMT
- Title: Improving Object Detection in Medical Image Analysis through Multiple
Expert Annotators: An Empirical Investigation
- Authors: Hieu H. Pham, Khiem H. Le, Tuan V. Tran, Ha Q. Nguyen
- Abstract summary: The work discusses the use of machine learning algorithms for anomaly detection in medical image analysis.
We introduce a simple and effective approach that aggregates annotations from multiple annotators with varying levels of expertise.
We then aim to improve the efficiency of predictive models in abnormal detection tasks by estimating hidden labels from multiple annotations and using a re-weighted loss function to improve detection performance.
- Score: 0.3670422696827525
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The work discusses the use of machine learning algorithms for anomaly
detection in medical image analysis and how the performance of these algorithms
depends on the number of annotators and the quality of labels. To address the
issue of subjectivity in labeling with a single annotator, we introduce a
simple and effective approach that aggregates annotations from multiple
annotators with varying levels of expertise. We then aim to improve the
efficiency of predictive models in abnormal detection tasks by estimating
hidden labels from multiple annotations and using a re-weighted loss function
to improve detection performance. Our method is evaluated on a real-world
medical imaging dataset and outperforms relevant baselines that do not consider
disagreements among annotators.
Related papers
- MeLIAD: Interpretable Few-Shot Anomaly Detection with Metric Learning and Entropy-based Scoring [2.394081903745099]
We propose MeLIAD, a novel methodology for interpretable anomaly detection.
MeLIAD is based on metric learning and achieves interpretability by design without relying on any prior distribution assumptions of true anomalies.
Experiments on five public benchmark datasets, including quantitative and qualitative evaluation of interpretability, demonstrate that MeLIAD achieves improved anomaly detection and localization performance.
arXiv Detail & Related papers (2024-09-20T16:01:43Z) - Comparative Benchmarking of Failure Detection Methods in Medical Image Segmentation: Unveiling the Role of Confidence Aggregation [0.723226140060364]
This paper introduces a comprehensive benchmarking framework aimed at evaluating failure detection methodologies within medical image segmentation.
We identify the strengths and limitations of current failure detection metrics, advocating for the risk-coverage analysis as a holistic evaluation approach.
arXiv Detail & Related papers (2024-06-05T14:36:33Z) - A Comprehensive Library for Benchmarking Multi-class Visual Anomaly Detection [52.228708947607636]
This paper introduces a comprehensive visual anomaly detection benchmark, ADer, which is a modular framework for new methods.
The benchmark includes multiple datasets from industrial and medical domains, implementing fifteen state-of-the-art methods and nine comprehensive metrics.
We objectively reveal the strengths and weaknesses of different methods and provide insights into the challenges and future directions of multi-class visual anomaly detection.
arXiv Detail & Related papers (2024-06-05T13:40:07Z) - Adapting Visual-Language Models for Generalizable Anomaly Detection in Medical Images [68.42215385041114]
This paper introduces a novel lightweight multi-level adaptation and comparison framework to repurpose the CLIP model for medical anomaly detection.
Our approach integrates multiple residual adapters into the pre-trained visual encoder, enabling a stepwise enhancement of visual features across different levels.
Our experiments on medical anomaly detection benchmarks demonstrate that our method significantly surpasses current state-of-the-art models.
arXiv Detail & Related papers (2024-03-19T09:28:19Z) - Validating polyp and instrument segmentation methods in colonoscopy through Medico 2020 and MedAI 2021 Challenges [58.32937972322058]
"Medico automatic polyp segmentation (Medico 2020)" and "MedAI: Transparency in Medical Image (MedAI 2021)" competitions.
We present a comprehensive summary and analyze each contribution, highlight the strength of the best-performing methods, and discuss the possibility of clinical translations of such methods into the clinic.
arXiv Detail & Related papers (2023-07-30T16:08:45Z) - Domain Adaptive Multiple Instance Learning for Instance-level Prediction
of Pathological Images [45.132775668689604]
We propose a new task setting to improve the classification performance of the target dataset without increasing annotation costs.
In order to combine the supervisory information of both methods effectively, we propose a method to create pseudo-labels with high confidence.
arXiv Detail & Related papers (2023-04-07T08:31:06Z) - Learning from Multiple Expert Annotators for Enhancing Anomaly Detection
in Medical Image Analysis [0.31317409221921133]
In medical imaging analysis, multiple expert annotators often produce subjective estimates about "ground truth labels"
We propose a simple yet effective approach to combine annotations from multiple radiology experts for training a deep learning-based detector.
arXiv Detail & Related papers (2022-03-20T17:57:26Z) - Explaining medical AI performance disparities across sites with
confounder Shapley value analysis [8.785345834486057]
Multi-site evaluations are key to diagnosing such disparities.
Our framework provides a method for quantifying the marginal and cumulative effect of each type of bias on the overall performance difference.
We demonstrate its usefulness in a case study of a deep learning model trained to detect the presence of pneumothorax.
arXiv Detail & Related papers (2021-11-12T18:54:10Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
Anomaly detection for Magnetic Resonance Images (MRIs) can be solved with unsupervised methods.
We have proposed a slice-wise semi-supervised method for tumour detection based on the computation of a dissimilarity function in the latent space of a Variational AutoEncoder.
We show that by training the models on higher resolution images and by improving the quality of the reconstructions, we obtain results which are comparable with different baselines.
arXiv Detail & Related papers (2020-07-24T14:02:09Z) - Semi-supervised Medical Image Classification with Relation-driven
Self-ensembling Model [71.80319052891817]
We present a relation-driven semi-supervised framework for medical image classification.
It exploits the unlabeled data by encouraging the prediction consistency of given input under perturbations.
Our method outperforms many state-of-the-art semi-supervised learning methods on both single-label and multi-label image classification scenarios.
arXiv Detail & Related papers (2020-05-15T06:57:54Z) - Adaptive Object Detection with Dual Multi-Label Prediction [78.69064917947624]
We propose a novel end-to-end unsupervised deep domain adaptation model for adaptive object detection.
The model exploits multi-label prediction to reveal the object category information in each image.
We introduce a prediction consistency regularization mechanism to assist object detection.
arXiv Detail & Related papers (2020-03-29T04:23:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.