論文の概要: Policy Gradient Methods for Discrete Time Linear Quadratic Regulator
With Random Parameters
- arxiv url: http://arxiv.org/abs/2303.16548v1
- Date: Wed, 29 Mar 2023 09:14:38 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-30 15:28:59.290250
- Title: Policy Gradient Methods for Discrete Time Linear Quadratic Regulator
With Random Parameters
- Title(参考訳): ランダムパラメータを持つ離散時間線形二次レギュレータのポリシー勾配法
- Authors: Deyue Li
- Abstract要約: 本稿では、離散時間線形系と二次基準に対する無限水平最適制御問題について検討する。
本研究では,パラメータの統計的知識を必要とせずに最適制御を探索するために,強化学習手法であるポリシ勾配法を適用した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper studies an infinite horizon optimal control problem for
discrete-time linear system and quadratic criteria, both with random parameters
which are independent and identically distributed with respect to time. In this
general setting, we apply the policy gradient method, a reinforcement learning
technique, to search for the optimal control without requiring knowledge of
statistical information of the parameters. We investigate the sub-Gaussianity
of the state process and establish global linear convergence guarantee for this
approach based on assumptions that are weaker and easier to verify compared to
existing results. Numerical experiments are presented to illustrate our result.
- Abstract(参考訳): 本稿では,離散時間線形システムと二次基準に対する無限大地平線最適制御問題と,時間に対して独立かつ同一に分布するランダムパラメータについて検討する。
この一般的な設定では,強化学習手法であるポリシー勾配法を適用し,パラメータの統計情報の知識を必要とせずに最適制御を探索する。
本研究では,既存の結果よりも弱く,検証しやすい仮定に基づいて,状態プロセスの準ゲージ性を調査し,このアプローチに対する大域的線形収束保証を確立する。
この結果を示すために数値実験を行った。
関連論文リスト
- Statistical Inference for Temporal Difference Learning with Linear Function Approximation [62.69448336714418]
時間差差(TD)学習は、おそらく政策評価に最も広く使用されるものであり、この目的の自然な枠組みとして機能する。
本稿では,Polyak-Ruppert平均化と線形関数近似によるTD学習の整合性について検討し,既存の結果よりも3つの重要な改善点を得た。
論文 参考訳(メタデータ) (2024-10-21T15:34:44Z) - Full error analysis of policy gradient learning algorithms for exploratory linear quadratic mean-field control problem in continuous time with common noise [0.0]
政策勾配学習(PG)について検討し,まずモデルベース環境での収束を実証する。
モデルフリー環境では,2点勾配推定を用いたPGアルゴリズムの線形収束とサンプル複雑性を大域的に証明する。
この設定では、パラメータ化された最適ポリシーは、状態と人口分布のサンプルから学習される。
論文 参考訳(メタデータ) (2024-08-05T14:11:51Z) - A Unified Theory of Stochastic Proximal Point Methods without Smoothness [52.30944052987393]
近点法はその数値的安定性と不完全なチューニングに対する頑健性からかなりの関心を集めている。
本稿では,近位点法(SPPM)の幅広いバリエーションの包括的解析について述べる。
論文 参考訳(メタデータ) (2024-05-24T21:09:19Z) - Learning Optimal Deterministic Policies with Stochastic Policy Gradients [62.81324245896716]
政策勾配法(PG法)は連続強化学習(RL法)問題に対処する手法として成功している。
一般的には、収束(ハイパー)政治は、決定論的バージョンをデプロイするためにのみ学習される。
本稿では,サンプルの複雑性とデプロイされた決定論的ポリシのパフォーマンスのトレードオフを最適化するために,学習に使用する探索レベルの調整方法を示す。
論文 参考訳(メタデータ) (2024-05-03T16:45:15Z) - High-probability sample complexities for policy evaluation with linear function approximation [88.87036653258977]
本研究では,2つの広く利用されている政策評価アルゴリズムに対して,最適線形係数の予め定義された推定誤差を保証するために必要なサンプル複素量について検討する。
高確率収束保証に縛られた最初のサンプル複雑性を確立し、許容レベルへの最適依存を実現する。
論文 参考訳(メタデータ) (2023-05-30T12:58:39Z) - Regret Analysis of Certainty Equivalence Policies in Continuous-Time
Linear-Quadratic Systems [0.0]
本研究では,線形四元数系の正準モデル制御のためのユビキタス強化学習ポリシーの理論的性能保証について検討する。
我々は、時間的後悔境界の平方根を確立し、ランダム化された確実性等価ポリシーが一つの状態軌跡から高速に最適な制御行動を学ぶことを示す。
論文 参考訳(メタデータ) (2022-06-09T11:47:36Z) - A Priori Denoising Strategies for Sparse Identification of Nonlinear
Dynamical Systems: A Comparative Study [68.8204255655161]
本研究では, 局所的およびグローバルな平滑化手法の性能と, 状態測定値の偏差について検討・比較する。
一般に,測度データセット全体を用いたグローバルな手法は,局所点の周辺に隣接するデータサブセットを用いる局所的手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-01-29T23:31:25Z) - Improper Learning with Gradient-based Policy Optimization [62.50997487685586]
未知のマルコフ決定過程に対して学習者がmベースコントローラを与えられる不適切な強化学習設定を考える。
制御器の不適切な混合のクラス上で動作する勾配に基づくアプローチを提案する。
論文 参考訳(メタデータ) (2021-02-16T14:53:55Z) - Policy Gradient Methods for the Noisy Linear Quadratic Regulator over a
Finite Horizon [3.867363075280544]
線形2次レギュレータ(LQR)問題における最適ポリシーを見つけるための強化学習法について検討する。
我々は、有限時間地平線と弱い仮定の下での状態ダイナミクスの設定に対する大域的線形収束を保証する。
基礎となるダイナミクスのモデルを仮定し、データに直接メソッドを適用する場合の結果を示す。
論文 参考訳(メタデータ) (2020-11-20T09:51:49Z) - Technical Report: Adaptive Control for Linearizable Systems Using
On-Policy Reinforcement Learning [41.24484153212002]
本稿では,未知システムに対するフィードバック線形化に基づくトラッキング制御系を適応的に学習するフレームワークを提案する。
学習した逆モデルがすべての時点において可逆である必要はない。
二重振り子の模擬例は、提案された理論の有用性を示している。
論文 参考訳(メタデータ) (2020-04-06T15:50:31Z) - Convergence and sample complexity of gradient methods for the model-free
linear quadratic regulator problem [27.09339991866556]
本稿では,コントローラの空間を直接探索することにより,未知の計算系に対する最適制御を求める。
我々は、安定化フィードバックゲインの勾配-フローのダイナミクスセットに焦点をあてて、そのような手法の性能と効率を最小化するための一歩を踏み出した。
論文 参考訳(メタデータ) (2019-12-26T16:56:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。