EPG-MGCN: Ego-Planning Guided Multi-Graph Convolutional Network for
Heterogeneous Agent Trajectory Prediction
- URL: http://arxiv.org/abs/2303.17027v1
- Date: Wed, 29 Mar 2023 21:14:05 GMT
- Title: EPG-MGCN: Ego-Planning Guided Multi-Graph Convolutional Network for
Heterogeneous Agent Trajectory Prediction
- Authors: Zihao Sheng, Zilin Huang, Sikai Chen
- Abstract summary: This paper proposes a ego-planning guided multi-graph convolutional network (EPG-MGCN) to predict the trajectories of heterogeneous agents.
EPG-MGCN first models the social interactions by employing four graph topologies.
Finally, a category-specific gated recurrent unit (CS-GRU) encoder-decoder is designed to generate future trajectories for each specific type of agents.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: To drive safely in complex traffic environments, autonomous vehicles need to
make an accurate prediction of the future trajectories of nearby heterogeneous
traffic agents (i.e., vehicles, pedestrians, bicyclists, etc). Due to the
interactive nature, human drivers are accustomed to infer what the future
situations will become if they are going to execute different maneuvers. To
fully exploit the impacts of interactions, this paper proposes a ego-planning
guided multi-graph convolutional network (EPG-MGCN) to predict the trajectories
of heterogeneous agents using both historical trajectory information and ego
vehicle's future planning information. The EPG-MGCN first models the social
interactions by employing four graph topologies, i.e., distance graphs,
visibility graphs, planning graphs and category graphs. Then, the planning
information of the ego vehicle is encoded by both the planning graph and the
subsequent planning-guided prediction module to reduce uncertainty in the
trajectory prediction. Finally, a category-specific gated recurrent unit
(CS-GRU) encoder-decoder is designed to generate future trajectories for each
specific type of agents. Our network is evaluated on two real-world trajectory
datasets: ApolloScape and NGSIM. The experimental results show that the
proposed EPG-MGCN achieves state-of-the-art performance compared to existing
methods.
Related papers
- PPAD: Iterative Interactions of Prediction and Planning for End-to-end Autonomous Driving [57.89801036693292]
PPAD (Iterative Interaction of Prediction and Planning Autonomous Driving) considers the timestep-wise interaction to better integrate prediction and planning.
We design ego-to-agent, ego-to-map, and ego-to-BEV interaction mechanisms with hierarchical dynamic key objects attention to better model the interactions.
arXiv Detail & Related papers (2023-11-14T11:53:24Z) - FJMP: Factorized Joint Multi-Agent Motion Prediction over Learned
Directed Acyclic Interaction Graphs [8.63314005149641]
We propose FJMP, a Factorized Joint Motion Prediction framework for interactive driving scenarios.
FJMP produces more accurate and scene-consistent joint trajectory predictions than non-factorized approaches.
FJMP ranks 1st on the multi-agent test leaderboard of the INTERACTION dataset.
arXiv Detail & Related papers (2022-11-27T18:59:17Z) - Deep Interactive Motion Prediction and Planning: Playing Games with
Motion Prediction Models [162.21629604674388]
This work presents a game-theoretic Model Predictive Controller (MPC) that uses a novel interactive multi-agent neural network policy as part of its predictive model.
Fundamental to the success of our method is the design of a novel multi-agent policy network that can steer a vehicle given the state of the surrounding agents and the map information.
arXiv Detail & Related papers (2022-04-05T17:58:18Z) - Trajectory Prediction with Graph-based Dual-scale Context Fusion [43.51107329748957]
We present a graph-based trajectory prediction network named the Dual Scale Predictor.
It encodes both the static and dynamical driving context in a hierarchical manner.
Thanks to the proposed dual-scale context fusion network, our DSP is able to generate accurate and human-like multi-modal trajectories.
arXiv Detail & Related papers (2021-11-02T13:42:16Z) - Graph-Based Spatial-Temporal Convolutional Network for Vehicle
Trajectory Prediction in Autonomous Driving [2.6774008509841005]
This paper proposes a graph-based spatial-temporal convolutional network ( GSTCN) to predict future trajectory distributions of all neighbor vehicles.
The spatial-temporal features are encoded and decoded by a gated recurrent unit (GRU) network to generate future trajectory distributions.
Our network is evaluated on two real-world freeway trajectory datasets: I-80 and US-101 in the Next Generation Simulation (NGSIM)
arXiv Detail & Related papers (2021-09-27T02:20:38Z) - SGCN:Sparse Graph Convolution Network for Pedestrian Trajectory
Prediction [64.16212996247943]
We present a Sparse Graph Convolution Network(SGCN) for pedestrian trajectory prediction.
Specifically, the SGCN explicitly models the sparse directed interaction with a sparse directed spatial graph to capture adaptive interaction pedestrians.
visualizations indicate that our method can capture adaptive interactions between pedestrians and their effective motion tendencies.
arXiv Detail & Related papers (2021-04-04T03:17:42Z) - Spatio-Temporal Graph Dual-Attention Network for Multi-Agent Prediction
and Tracking [23.608125748229174]
We propose a generic generative neural system for multi-agent trajectory prediction involving heterogeneous agents.
The proposed system is evaluated on three public benchmark datasets for trajectory prediction.
arXiv Detail & Related papers (2021-02-18T02:25:35Z) - TNT: Target-driveN Trajectory Prediction [76.21200047185494]
We develop a target-driven trajectory prediction framework for moving agents.
We benchmark it on trajectory prediction of vehicles and pedestrians.
We outperform state-of-the-art on Argoverse Forecasting, INTERACTION, Stanford Drone and an in-house Pedestrian-at-Intersection dataset.
arXiv Detail & Related papers (2020-08-19T06:52:46Z) - TPNet: Trajectory Proposal Network for Motion Prediction [81.28716372763128]
Trajectory Proposal Network (TPNet) is a novel two-stage motion prediction framework.
TPNet first generates a candidate set of future trajectories as hypothesis proposals, then makes the final predictions by classifying and refining the proposals.
Experiments on four large-scale trajectory prediction datasets, show that TPNet achieves the state-of-the-art results both quantitatively and qualitatively.
arXiv Detail & Related papers (2020-04-26T00:01:49Z) - PiP: Planning-informed Trajectory Prediction for Autonomous Driving [69.41885900996589]
We propose planning-informed trajectory prediction (PiP) to tackle the prediction problem in the multi-agent setting.
By informing the prediction process with the planning of ego vehicle, our method achieves the state-of-the-art performance of multi-agent forecasting on highway datasets.
arXiv Detail & Related papers (2020-03-25T16:09:54Z) - Social-WaGDAT: Interaction-aware Trajectory Prediction via Wasserstein
Graph Double-Attention Network [29.289670231364788]
In this paper, we propose a generic generative neural system for multi-agent trajectory prediction.
We also employ an efficient kinematic constraint layer applied to vehicle trajectory prediction.
The proposed system is evaluated on three public benchmark datasets for trajectory prediction.
arXiv Detail & Related papers (2020-02-14T20:11:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.