Spin and Orbital Angular Momentum of Coherent Photons in a Waveguide
- URL: http://arxiv.org/abs/2303.17129v1
- Date: Thu, 30 Mar 2023 03:24:18 GMT
- Title: Spin and Orbital Angular Momentum of Coherent Photons in a Waveguide
- Authors: Shinichi Saito
- Abstract summary: We show that spin and orbital angular momentum of a photon cannot be split from the total orbital angular momentum in a gauge-invariant way.
By applying a standard quantum field theory using a coherent state, we obtained the gauge-independent expressions of spin and orbital angular momentum operators.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Spin angular momentum of a photon corresponds to a polarisation degree of
freedom of lights, and such that various polarisation properties are coming
from macroscopic manifestation of quantum-mechanical properties of lights. An
orbital degree of freedom of lights is also manipulated to form a vortex of
lights with orbital angular momentum, which is also quantised. However, it is
considered that spin and orbital angular momentum of a photon cannot be split
from the total orbital angular momentum in a gauge-invariant way. Here, we
revisit this issue for a coherent monochromatic ray from a laser source,
propagating in a waveguide. We obtained the helical components of spin and
orbital angular momentum by the correspondence with the classical Ponyting
vector. By applying a standard quantum field theory using a coherent state, we
obtained the gauge-independent expressions of spin and orbital angular momentum
operators. During the derivations, it was essential to take a finite
cross-sectional area into account, which leads the finite longitudinal
component along the direction of the propagation, which allows the splitting.
Therefore, the finite mode profile was responsible to justify the splitting,
which was not possible as far as we are using plane-wave expansions in a
standard theory of quantum-electrodynamics (QED). Our results suggest spin and
orbital angular momentum are well-defined quantum-mechanical freedoms at least
for coherent photons propagating in a waveguide and in a vacuum with a finite
mode profile.
Related papers
- Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Representation Theory and Topology of Coherent Photons with Angular
Momentum [0.0]
Photons have spin and orbital angular momentum as internal degrees of freedom.
Stokes parameters are spin expectation values of coherent photons.
We have applied an SU(N) representation theory to describe both spin and orbital angular momentum of photons.
arXiv Detail & Related papers (2023-04-05T01:02:27Z) - Dirac Equation for Photons: Origin of Polarisation [0.0]
We discuss propagation of coherent rays of photons in a graded-index optical fibre.
The energy spectrum is massive with the effective mass as a function of the confinement and orbital angular momentum.
Spin expectation value of a photon corresponds to the polarisation state in the Poincar'e sphere.
arXiv Detail & Related papers (2023-03-30T03:34:59Z) - Quantum vortices of strongly interacting photons [52.131490211964014]
Vortices are hallmark of nontrivial dynamics in nonlinear physics.
We report on the realization of quantum vortices resulting from a strong photon-photon interaction in a quantum nonlinear optical medium.
For three photons, the formation of vortex lines and a central vortex ring attests to a genuine three-photon interaction.
arXiv Detail & Related papers (2023-02-12T18:11:04Z) - Controlling photon polarisation with a single quantum dot spin [0.0]
We demonstrate the control of giant polarisation rotations induced by a single electron spin.
We find that the polarisation state of the reflected photons can be manipulated in most of the Poincar'e sphere, through controlled spin-induced rotations.
This control allows the operation of spin-photon interfaces in various configurations, including at zero or low magnetic fields.
arXiv Detail & Related papers (2022-12-07T16:37:59Z) - Quantum structured light: Non-classical spin texture of twisted
single-photon pulses [8.19841678851784]
A framework for the quantum density of spin and OAM for single-photons remains elusive.
We develop a theoretical framework and put forth the concept of quantum structured light for space-time wavepackets at the single-photon level.
Our work paves the way for quantum spin-OAM physics in twisted single photon pulses.
arXiv Detail & Related papers (2021-02-26T01:08:57Z) - Properties of Spin and Orbital Angular Momenta of Light [4.291616110077346]
It turns out that the spin part of the angular momentum has continuous eigenvalues.
Particular attention is given to the paraxial limit, and to the definition of Laguerre--Gaussian modes for photons.
arXiv Detail & Related papers (2020-06-04T07:28:23Z) - Hyperentanglement in structured quantum light [50.591267188664666]
Entanglement in high-dimensional quantum systems, where one or more degrees of freedom of light are involved, offers increased information capacities and enables new quantum protocols.
Here, we demonstrate a functional source of high-dimensional, noise-resilient hyperentangled states encoded in time-frequency and vector-vortex structured modes.
We generate highly entangled photon pairs at telecom wavelength that we characterise via two-photon interference and quantum state tomography, achieving near-unity visibilities and fidelities.
arXiv Detail & Related papers (2020-06-02T18:00:04Z) - Theory of waveguide-QED with moving emitters [68.8204255655161]
We study a system composed by a waveguide and a moving quantum emitter in the single excitation subspace.
We first characterize single-photon scattering off a single moving quantum emitter, showing both nonreciprocal transmission and recoil-induced reduction of the quantum emitter motional energy.
arXiv Detail & Related papers (2020-03-20T12:14:10Z) - Position and spin in relativistic quantum mechanics [68.8204255655161]
The position and spin operators in the Foldy-Wouthuysen representation are quantum-mechanical counterparts of the classical position and spin variables.
The spin-orbit interaction does not exist for a free particle if the conventional operators of the orbital angular momentum and the rest-frame spin are used.
arXiv Detail & Related papers (2020-03-14T07:49:40Z) - Entanglement robustness to excitonic spin precession in a quantum dot [43.55994393060723]
A semiconductor quantum dot (QD) is an attractive resource to generate polarization-entangled photon pairs.
We study the excitonic spin precession (flip-flop) in a family of QDs with different excitonic fine-structure splitting (FSS)
Our results reveal that coherent processes leave the time post-selected entanglement of QDs unaffected while changing the eigenstates of the system.
arXiv Detail & Related papers (2020-01-31T13:50:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.