Model-agnostic explainable artificial intelligence for object detection in image data
- URL: http://arxiv.org/abs/2303.17249v4
- Date: Wed, 4 Sep 2024 09:27:35 GMT
- Title: Model-agnostic explainable artificial intelligence for object detection in image data
- Authors: Milad Moradi, Ke Yan, David Colwell, Matthias Samwald, Rhona Asgari,
- Abstract summary: Black-box explanation method named Black-box Object Detection Explanation by Masking (BODEM)
We propose a hierarchical random masking framework in which coarse-grained masks are used in lower levels to find salient regions within an image.
Experimentations on various object detection datasets and models showed that BODEM can effectively explain the behavior of object detectors.
- Score: 8.042562891309414
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In recent years, deep neural networks have been widely used for building high-performance Artificial Intelligence (AI) systems for computer vision applications. Object detection is a fundamental task in computer vision, which has been greatly progressed through developing large and intricate AI models. However, the lack of transparency is a big challenge that may not allow the widespread adoption of these models. Explainable artificial intelligence is a field of research where methods are developed to help users understand the behavior, decision logics, and vulnerabilities of AI systems. Previously, few explanation methods were developed for object detection based on random masking. However, random masks may raise some issues regarding the actual importance of pixels within an image. In this paper, we design and implement a black-box explanation method named Black-box Object Detection Explanation by Masking (BODEM) through adopting a hierarchical random masking approach for object detection systems. We propose a hierarchical random masking framework in which coarse-grained masks are used in lower levels to find salient regions within an image, and fine-grained mask are used to refine the salient regions in higher levels. Experimentations on various object detection datasets and models showed that BODEM can effectively explain the behavior of object detectors. Moreover, our method outperformed Detector Randomized Input Sampling for Explanation (D-RISE) and Local Interpretable Model-agnostic Explanations (LIME) with respect to different quantitative measures of explanation effectiveness. The experimental results demonstrate that BODEM can be an effective method for explaining and validating object detection systems in black-box testing scenarios.
Related papers
- On the Black-box Explainability of Object Detection Models for Safe and Trustworthy Industrial Applications [7.848637922112521]
We focus on model-agnostic XAI methods for object detection models and propose D-P, an extension of the Morphological Fragmental Perturbation Pyramid (P), which uses segmentation-based mask generation.
We evaluate these methods on real-world industrial and robotic datasets, examining the influence of parameters such as the number of masks, model size, and image resolution on the quality of explanations.
arXiv Detail & Related papers (2024-10-28T13:28:05Z) - Underwater Object Detection in the Era of Artificial Intelligence: Current, Challenge, and Future [119.88454942558485]
Underwater object detection (UOD) aims to identify and localise objects in underwater images or videos.
In recent years, artificial intelligence (AI) based methods, especially deep learning methods, have shown promising performance in UOD.
arXiv Detail & Related papers (2024-10-08T00:25:33Z) - Towards Unified 3D Object Detection via Algorithm and Data Unification [70.27631528933482]
We build the first unified multi-modal 3D object detection benchmark MM- Omni3D and extend the aforementioned monocular detector to its multi-modal version.
We name the designed monocular and multi-modal detectors as UniMODE and MM-UniMODE, respectively.
arXiv Detail & Related papers (2024-02-28T18:59:31Z) - SHIELD : An Evaluation Benchmark for Face Spoofing and Forgery Detection
with Multimodal Large Language Models [63.946809247201905]
We introduce a new benchmark, namely SHIELD, to evaluate the ability of MLLMs on face spoofing and forgery detection.
We design true/false and multiple-choice questions to evaluate multimodal face data in these two face security tasks.
The results indicate that MLLMs hold substantial potential in the face security domain.
arXiv Detail & Related papers (2024-02-06T17:31:36Z) - Unleashing Mask: Explore the Intrinsic Out-of-Distribution Detection
Capability [70.72426887518517]
Out-of-distribution (OOD) detection is an indispensable aspect of secure AI when deploying machine learning models in real-world applications.
We propose a novel method, Unleashing Mask, which aims to restore the OOD discriminative capabilities of the well-trained model with ID data.
Our method utilizes a mask to figure out the memorized atypical samples, and then finetune the model or prune it with the introduced mask to forget them.
arXiv Detail & Related papers (2023-06-06T14:23:34Z) - An Efficient Ensemble Explainable AI (XAI) Approach for Morphed Face
Detection [1.2599533416395763]
We present a novel visual explanation approach named Ensemble XAI to provide a more comprehensive visual explanation for a deep learning prognostic model (EfficientNet-Grad1)
The experiments have been performed on three publicly available datasets namely Face Research Lab London Set, Wide Multi-Channel Presentation Attack (WMCA) and Makeup Induced Face Spoofing (MIFS)
arXiv Detail & Related papers (2023-04-23T13:43:06Z) - Object Recognition in Different Lighting Conditions at Various Angles by
Deep Learning Method [0.0]
Existing computer vision and object detection methods rely on neural networks and deep learning.
This article aims to classify the name of the various object based on the position of an object's detected box.
We find that this model's accuracy through recognition is mainly influenced by the proportion of objects and the number of samples.
arXiv Detail & Related papers (2022-10-18T06:23:26Z) - Hybrid Optimized Deep Convolution Neural Network based Learning Model
for Object Detection [0.0]
Object identification is one of the most fundamental and difficult issues in computer vision.
In recent years, deep learning-based object detection techniques have grabbed the public's interest.
In this study, a unique deep learning classification technique is used to create an autonomous object detecting system.
The suggested framework has a detection accuracy of 0.9864, which is greater than current techniques.
arXiv Detail & Related papers (2022-03-02T04:39:37Z) - M2TR: Multi-modal Multi-scale Transformers for Deepfake Detection [74.19291916812921]
forged images generated by Deepfake techniques pose a serious threat to the trustworthiness of digital information.
In this paper, we aim to capture the subtle manipulation artifacts at different scales for Deepfake detection.
We introduce a high-quality Deepfake dataset, SR-DF, which consists of 4,000 DeepFake videos generated by state-of-the-art face swapping and facial reenactment methods.
arXiv Detail & Related papers (2021-04-20T05:43:44Z) - Generalized Iris Presentation Attack Detection Algorithm under
Cross-Database Settings [63.90855798947425]
Presentation attacks pose major challenges to most of the biometric modalities.
We propose a generalized deep learning-based presentation attack detection network, MVANet.
It is inspired by the simplicity and success of hybrid algorithm or fusion of multiple detection networks.
arXiv Detail & Related papers (2020-10-25T22:42:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.