Introduction to gravitational redshift of quantum photons propagating in
curved spacetime
- URL: http://arxiv.org/abs/2303.17412v3
- Date: Thu, 18 May 2023 17:32:22 GMT
- Title: Introduction to gravitational redshift of quantum photons propagating in
curved spacetime
- Authors: Luis Adri\'an Alan\'is Rodr\'iguez, Andreas Wolfgang Schell and David
Edward Bruschi
- Abstract summary: The effect of gravity on the spectrum computed for photons largely confined along the direction of propagation is discussed.
A unitary transformation can be constructed for realistic photons with finite bandwidth.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Gravitational redshift is discussed in the context of quantum photons
propagating in curved spacetime. A brief introduction to modelling realistic
photons is first presented and the effect of gravity on the spectrum computed
for photons largely confined along the direction of propagation. It is then
shown that redshift-induced transformations on photon operators with sharp
momenta are not unitary, while a unitary transformation can be constructed for
realistic photons with finite bandwidth. The unitary transformation obtained is
then characterized as a multimode mixing operation, which is a generalized
rotation of the Hilbert-space basis. Finally, applications of these results are
discussed with focus on performance of quantum communication protocols,
exploitation of the effects for quantum metrology and sensing, as well as
potential for tests of fundamental science.
Related papers
- Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Shaping Single Photons through Multimode Optical Fibers using Mechanical
Perturbations [55.41644538483948]
We show an all-fiber approach for controlling the shape of single photons and the spatial correlations between entangled photon pairs.
We optimize these perturbations to localize the spatial distribution of a single photon or the spatial correlations of photon pairs in a single spot.
arXiv Detail & Related papers (2023-06-04T07:33:39Z) - Quantum vortices of strongly interacting photons [52.131490211964014]
Vortices are hallmark of nontrivial dynamics in nonlinear physics.
We report on the realization of quantum vortices resulting from a strong photon-photon interaction in a quantum nonlinear optical medium.
For three photons, the formation of vortex lines and a central vortex ring attests to a genuine three-photon interaction.
arXiv Detail & Related papers (2023-02-12T18:11:04Z) - Spectral Properties of Transverse Laguerre-Gauss Modes in Parametric Down-Conversion [0.0]
We study the spectral dependence of the transverse Laguerre-Gauss modes in parametric downconversion.
We show how the spectral and spatial coupling can be harnessed to tune the purity of the well-known orbital angular momentum entanglement.
This work has implications for efficient collection of entangled photons in a transverse single mode, quantum imaging, and engineering pure states for high-dimensional quantum information processing.
arXiv Detail & Related papers (2022-09-05T11:37:31Z) - Ultra-long photonic quantum walks via spin-orbit metasurfaces [52.77024349608834]
We report ultra-long photonic quantum walks across several hundred optical modes, obtained by propagating a light beam through very few closely-stacked liquid-crystal metasurfaces.
With this setup we engineer quantum walks up to 320 discrete steps, far beyond state-of-the-art experiments.
arXiv Detail & Related papers (2022-03-28T19:37:08Z) - The Formation of Photon-Molecules in Nanoscale Waveguides [0.0]
We investigate the formation of photon bound states in a system of interacting photons inside nanoscale wires.
For strongly interacting slow photons the amplitude of the photon-molecule wavefunction acquires a significant quantum nonlinear phase inside the nanowire.
Photon bound-states can be implemented for quantum information processing as quantum logic gates.
arXiv Detail & Related papers (2021-12-03T08:26:02Z) - Gravitational redshift induces quantum interference [0.0]
We show that gravitational redshift induces a unitary transformation on the quantum state of propagating photons.
We devise a protocol that exploits gravity to induce a Hong-Ou-Mandel-like interference effect on the state of two photons.
arXiv Detail & Related papers (2021-09-02T05:45:46Z) - Single-photon hologram of a zero-area pulse [0.0]
We experimentally demonstrate how the Hong-Ou-Mandel effect can be spectrally-resolved and harnessed to characterize a complex temporal mode of a single-photon.
The combination of bosonic quantum behavior with bandwidth-mismatched light-atom interaction is of fundamental importance for a deeper understanding of both phenomena, as well as their engineering offering applications in the characterization of ultra-fast transient processes.
arXiv Detail & Related papers (2021-05-06T16:37:34Z) - Hyperentanglement in structured quantum light [50.591267188664666]
Entanglement in high-dimensional quantum systems, where one or more degrees of freedom of light are involved, offers increased information capacities and enables new quantum protocols.
Here, we demonstrate a functional source of high-dimensional, noise-resilient hyperentangled states encoded in time-frequency and vector-vortex structured modes.
We generate highly entangled photon pairs at telecom wavelength that we characterise via two-photon interference and quantum state tomography, achieving near-unity visibilities and fidelities.
arXiv Detail & Related papers (2020-06-02T18:00:04Z) - Probing excited-state dynamics with quantum entangled photons:
Correspondence to coherent multidimensional spectroscopy [0.0]
Quantum light is a key resource for promoting quantum technology.
One such class of technology aims to improve the precision of optical measurements using engineered quantum states of light.
arXiv Detail & Related papers (2020-05-22T03:22:44Z) - Theory of waveguide-QED with moving emitters [68.8204255655161]
We study a system composed by a waveguide and a moving quantum emitter in the single excitation subspace.
We first characterize single-photon scattering off a single moving quantum emitter, showing both nonreciprocal transmission and recoil-induced reduction of the quantum emitter motional energy.
arXiv Detail & Related papers (2020-03-20T12:14:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.