Structured volume-law entanglement in an interacting, monitored Majorana
spin liquid
- URL: http://arxiv.org/abs/2303.17627v1
- Date: Thu, 30 Mar 2023 18:00:01 GMT
- Title: Structured volume-law entanglement in an interacting, monitored Majorana
spin liquid
- Authors: Guo-Yi Zhu, Nathanan Tantivasadakarn, Simon Trebst
- Abstract summary: We show that random, measurement-only circuits give rise to a structured volume-law entangled phase with subleading $L ln L$ liquid scaling behavior.
The sphere itself is a critical boundary with quantum Lifshitz scaling separating the volume-law phase from proximate area-law phases, a color code or a toric code.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Monitored quantum circuits allow for unprecedented dynamical control of
many-body entanglement. Here we show that random, measurement-only circuits,
implementing the competition of bond and plaquette couplings of the Kitaev
honeycomb model, give rise to a structured volume-law entangled phase with
subleading $L \ln L$ liquid scaling behavior. This interacting Majorana liquid
takes up a highly-symmetric, spherical parameter space within the entanglement
phase diagram obtained when varying the relative coupling probabilities. The
sphere itself is a critical boundary with quantum Lifshitz scaling separating
the volume-law phase from proximate area-law phases, a color code or a toric
code. An exception is a set of tricritical, self-dual points exhibiting
effective (1+1)d conformal scaling at which the volume-law phase and both
area-law phases meet. From a quantum information perspective, our results
define error thresholds for the color code in the presence of projective error
and stochastic syndrome measurements. We show that an alternative realization
of our model circuit can be implemented using unitary gates plus ancillary
single-qubit measurements only.
Related papers
- Noise-induced phase transitions in hybrid quantum circuits [3.625262223613696]
In this work, we investigate the effects of quantum noises with size-dependent probabilities $q=p/Lalpha$ where $alpha$ represents the scaling exponent.
We have identified a noise-induced entanglement phase transition from a volume law to a power (area) law in the presence (absence) of measurements.
This unified picture further deepens the understanding of the connection between entanglement behavior and the capacity of information protection.
arXiv Detail & Related papers (2024-01-30T00:03:56Z) - Action formalism for geometric phases from self-closing quantum
trajectories [55.2480439325792]
We study the geometric phase of a subset of self-closing trajectories induced by a continuous Gaussian measurement of a single qubit system.
We show that the geometric phase of the most likely trajectories undergoes a topological transition for self-closing trajectories as a function of the measurement strength parameter.
arXiv Detail & Related papers (2023-12-22T15:20:02Z) - Measurement-induced phase transitions in the toric code [0.0]
We show how distinct phases of matter can be generated by performing random single-qubit measurements on a subsystem of toric code.
We find that varying the probabilities of different Pauli measurements can drive transitions in the un-measured boundary between phases.
arXiv Detail & Related papers (2023-07-05T13:44:18Z) - Majorana Loop Models for Measurement-Only Quantum Circuits [0.0]
Projective measurements in random quantum circuits lead to a rich breadth of entanglement phases and extend the realm of non-unitary quantum dynamics.
Here we explore the connection between measurement-only quantum circuits in one spatial dimension and the statistical mechanics of loop models in two dimensions.
arXiv Detail & Related papers (2023-05-29T18:45:11Z) - Evolution of many-body systems under ancilla quantum measurements [58.720142291102135]
We study the concept of implementing quantum measurements by coupling a many-body lattice system to an ancillary degree of freedom.
We find evidence of a disentangling-entangling measurement-induced transition as was previously observed in more abstract models.
arXiv Detail & Related papers (2023-03-13T13:06:40Z) - Geometric phases along quantum trajectories [58.720142291102135]
We study the distribution function of geometric phases in monitored quantum systems.
For the single trajectory exhibiting no quantum jumps, a topological transition in the phase acquired after a cycle.
For the same parameters, the density matrix does not show any interference.
arXiv Detail & Related papers (2023-01-10T22:05:18Z) - Probing finite-temperature observables in quantum simulators of spin
systems with short-time dynamics [62.997667081978825]
We show how finite-temperature observables can be obtained with an algorithm motivated from the Jarzynski equality.
We show that a finite temperature phase transition in the long-range transverse field Ising model can be characterized in trapped ion quantum simulators.
arXiv Detail & Related papers (2022-06-03T18:00:02Z) - Measurement-Induced Power-Law Negativity in an Open Monitored Quantum
Circuit [0.0]
We show that measurements can stabilize quantum entanglement within open quantum systems.
Specifically, in random unitary circuits with dephasing at the boundary, we find both numerically and analytically that projective measurements performed at a small nonvanishing rate results in a steady state.
arXiv Detail & Related papers (2022-02-25T19:00:05Z) - Quantum Error Correction with Gauge Symmetries [69.02115180674885]
Quantum simulations of Lattice Gauge Theories (LGTs) are often formulated on an enlarged Hilbert space containing both physical and unphysical sectors.
We provide simple fault-tolerant procedures that exploit such redundancy by combining a phase flip error correction code with the Gauss' law constraint.
arXiv Detail & Related papers (2021-12-09T19:29:34Z) - Generalized quantum measurements with matrix product states:
Entanglement phase transition and clusterization [58.720142291102135]
We propose a method for studying the time evolution of many-body quantum lattice systems under continuous and site-resolved measurement.
We observe a peculiar phenomenon of measurement-induced particle clusterization that takes place only for frequent moderately strong measurements, but not for strong infrequent measurements.
arXiv Detail & Related papers (2021-04-21T10:36:57Z) - Measurement-induced topological entanglement transitions in symmetric
random quantum circuits [0.0]
We study a class of (1+1)D symmetric random quantum circuits with two competing types of measurements.
The circuit exhibits a rich phase diagram involving robust symmetry-protected topological (SPT), trivial, and volume law entangled phases.
arXiv Detail & Related papers (2020-04-15T18:00:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.