論文の概要: Why is plausibility surprisingly problematic as an XAI criterion?
- arxiv url: http://arxiv.org/abs/2303.17707v3
- Date: Tue, 18 Jun 2024 22:38:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-22 09:10:16.299145
- Title: Why is plausibility surprisingly problematic as an XAI criterion?
- Title(参考訳): なぜXAI基準が驚くほど問題になるのか?
- Authors: Weina Jin, Xiaoxiao Li, Ghassan Hamarneh,
- Abstract要約: われわれは,XAIの共通基準である妥当性を初めて批判的に検討する。
それは、AIの説明がいかに人間に納得させるかを測定する。
XAIアルゴリズムの評価や最適化の基準として可視性を使うことは推奨しません。
- 参考スコア(独自算出の注目度): 38.0428570713717
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Explainable artificial intelligence (XAI) is motivated by the problem of making AI predictions understandable, transparent, and responsible, as AI becomes increasingly impactful in society and high-stakes domains. XAI algorithms are designed to explain AI decisions in human-understandable ways. The evaluation and optimization criteria of XAI are gatekeepers for XAI algorithms to achieve their expected goals and should withstand rigorous inspection. To improve the scientific rigor of XAI, we conduct the first critical examination of a common XAI criterion: plausibility. It measures how convincing the AI explanation is to humans, and is usually quantified by metrics on feature localization or correlation of feature attribution. Our examination shows, although plausible explanations can improve users' understanding and local trust in an AI decision, doing so is at the cost of abandoning other possible approaches of enhancing understandability, increasing misleading explanations that manipulate users, being unable to achieve complementary human-AI task performance, and deteriorating users' global trust in the overall AI system. Because the flaws outweigh the benefits, we do not recommend using plausibility as a criterion to evaluate or optimize XAI algorithms. We also identify new directions to improve XAI on understandability and utility to users including complementary human-AI task performance.
- Abstract(参考訳): 説明可能な人工知能(XAI)は、AIが社会や高い領域にますます影響を及ぼすにつれて、AIの予測を理解し、透明化し、責任を負わせるという問題によって動機付けられている。
XAIアルゴリズムは、人間の理解可能な方法でAIの決定を説明するように設計されている。
XAIの評価と最適化基準は、XAIアルゴリズムが期待する目標を達成するためのゲートキーパーであり、厳格な検査に耐えるべきである。
XAI の科学的厳密性を改善するため,我々は XAI の共通基準である妥当性を初めて批判的に検討する。
これはAIの説明がいかに人間に説得するかを測定し、通常、特徴のローカライゼーションや特徴属性の相関に関するメトリクスによって定量化される。
我々の調査では、もっともらしい説明は、AI決定に対するユーザの理解とローカルな信頼を改善することができるが、それは、理解可能性を高める他の可能なアプローチを捨てること、ユーザを操作する誤解を招く説明を増やすこと、補完的なAIタスクのパフォーマンスを達成できないこと、AIシステム全体のグローバルな信頼を損なうことである。
欠陥は利点を上回るため、XAIアルゴリズムの評価や最適化の基準として可視性を使用することは推奨しません。
また、補完的なヒューマン・AIタスクのパフォーマンスを含むユーザに対する理解性とユーティリティに関するXAIを改善するための新たな方向を特定する。
関連論文リスト
- Study on the Helpfulness of Explainable Artificial Intelligence [0.0]
法律、ビジネス、倫理的要件は、効果的なXAIの使用を動機付けている。
本稿では,ユーザがプロキシタスクをうまく実行する能力を通じて,XAI手法を評価することを提案する。
言い換えれば、人間の意思決定におけるXAIの有用性について論じる。
論文 参考訳(メタデータ) (2024-10-14T14:03:52Z) - Dataset | Mindset = Explainable AI | Interpretable AI [36.001670039529586]
機械学習(ML)の出力を支える理由を説明するために、与えられたデータセットにさまざまなXAIツールを適用すると、"説明可能な"人工知能(XAI)と"解釈可能なAI(IAI)"が相反する。
我々は、XAIは、IAIのサブセットであると主張する。IAIの概念はデータセットの範囲を超えており、思考の領域を含んでいる。
我々は、これらの概念を明確にし、将来のAI応用と研究における多くの実践者や政策立案者に対して、XAI、IAI、EAI、TAIの基礎を築いたいと考えています。
論文 参考訳(メタデータ) (2024-08-22T14:12:53Z) - Investigating the Role of Explainability and AI Literacy in User Compliance [2.8623940003518156]
XAIの導入により,ユーザのコンプライアンスが向上する一方で,AIリテラシーの影響も受けていることがわかった。
また,AIリテラシーXAIとユーザのコンプライアンスの関係は,ユーザのメンタルモデルが介在していることも確認した。
論文 参考訳(メタデータ) (2024-06-18T14:28:12Z) - Seamful XAI: Operationalizing Seamful Design in Explainable AI [59.89011292395202]
AIシステムのミスは必然的であり、技術的制限と社会技術的ギャップの両方から生じる。
本稿では, 社会工学的・インフラ的ミスマッチを明らかにすることにより, シームレスな設計がAIの説明可能性を高めることを提案する。
43人のAI実践者と実際のエンドユーザでこのプロセスを探求します。
論文 参考訳(メタデータ) (2022-11-12T21:54:05Z) - Transcending XAI Algorithm Boundaries through End-User-Inspired Design [27.864338632191608]
エンドユーザに対する説明責任重視の機能サポートの欠如は、高度なドメインにおけるAIの安全で責任ある使用を妨げる可能性がある。
我々の研究は、エンドユーザーがXAIを使用する際の技術的な問題を根底から解決することで、新たな研究課題がもたらされることを示している。
このようなエンドユーザにインスパイアされた研究質問は、AIを民主化し、クリティカルドメインにおけるAIの責任ある使用を保証することによって、社会的善を促進できる可能性がある。
論文 参考訳(メタデータ) (2022-08-18T09:44:51Z) - Connecting Algorithmic Research and Usage Contexts: A Perspective of
Contextualized Evaluation for Explainable AI [65.44737844681256]
説明可能なAI(XAI)を評価する方法に関するコンセンサスの欠如は、この分野の進歩を妨げる。
このギャップを埋める一つの方法は、異なるユーザ要求を考慮に入れた評価方法を開発することである、と我々は主張する。
論文 参考訳(メタデータ) (2022-06-22T05:17:33Z) - Cybertrust: From Explainable to Actionable and Interpretable AI (AI2) [58.981120701284816]
Actionable and Interpretable AI (AI2)は、AIレコメンデーションにユーザの信頼度を明確に定量化し視覚化する。
これにより、AIシステムの予測を調べてテストすることで、システムの意思決定に対する信頼の基盤を確立することができる。
論文 参考訳(メタデータ) (2022-01-26T18:53:09Z) - A User-Centred Framework for Explainable Artificial Intelligence in
Human-Robot Interaction [70.11080854486953]
本稿では,XAIのソーシャル・インタラクティブな側面に着目したユーザ中心型フレームワークを提案する。
このフレームワークは、エキスパートでないユーザのために考えられた対話型XAIソリューションのための構造を提供することを目的としている。
論文 参考訳(メタデータ) (2021-09-27T09:56:23Z) - Explainable Artificial Intelligence Approaches: A Survey [0.22940141855172028]
人工知能ベースの「ブラックボックス」システム/モデルからの決定の説明力の欠如は、ハイステークアプリケーションでAIを採用するための重要な障害です。
相互ケーススタディ/タスクにより、一般的なXAI(Explainable Artificial Intelligence)手法を実証します。
競争優位性を多角的に分析します。
我々はXAIを媒体として、責任や人間中心のAIへの道を推奨する。
論文 参考訳(メタデータ) (2021-01-23T06:15:34Z) - Effect of Confidence and Explanation on Accuracy and Trust Calibration
in AI-Assisted Decision Making [53.62514158534574]
ケース固有のモデル情報を明らかにする特徴が、信頼度を調整し、人間とAIのジョイントパフォーマンスを向上させることができるかどうかを検討する。
信頼スコアは、AIモデルに対する人々の信頼を校正するのに役立ちますが、信頼の校正だけでは、AI支援による意思決定を改善するには不十分です。
論文 参考訳(メタデータ) (2020-01-07T15:33:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。