Scalable Determination of Multipartite Entanglement in Quantum Networks
- URL: http://arxiv.org/abs/2303.17771v5
- Date: Thu, 8 Aug 2024 15:58:37 GMT
- Title: Scalable Determination of Multipartite Entanglement in Quantum Networks
- Authors: Wei-Ting Kao, Chien-Ying Huang, Tung-Ju Tsai, Shih-Hsuan Chen, Sheng-Yan Sun, Yu-Cheng Li, Teh-Lu Liao, Chih-Sung Chuu, He Lu, Che-Ming Li,
- Abstract summary: Quantum networks comprised of entangled end nodes serve stronger than the classical correlation for unparalleled quantum internet applications.
We show that determining quantum network fidelity and genuine $N$-node entanglement in an untrusted star network requires only $N+1$ measurement settings.
- Score: 1.248349449820389
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum networks comprised of entangled end nodes serve stronger than the classical correlation for unparalleled quantum internet applications. However, practical quantum networking is affected by noise, which at its worst, causes end nodes to be described by pre-existing classical data. In such untrusted networks, determining quantum network fidelity and genuine multi-node entanglement becomes crucial. Here, we show that determining quantum network fidelity and genuine $N$-node entanglement in an untrusted star network requires only $N+1$ measurement settings. This method establishes a semi-trusted framework, allowing some nodes to relax their assumptions. Our network determination method is enabled by detecting genuine $N$-node Einstein-Podolsky-Rosen steerability. Experimentally, using spontaneous parametric down-conversion entanglement sources, we demonstrate the determinations of genuine 3-photon and 4-photon quantum networks and the false positives of the widely used entanglement witness, the fidelity criterion of $1/2$. Our results provide a scalable method for the determination of multipartite entanglement in realistic quantum networks.
Related papers
- Experimental Quantum Byzantine Agreement on a Three-User Quantum Network with Integrated Photonics [13.10577231578478]
Building quantum communication networks in a scalable and cost-effective way is essential for their widespread adoption.
Here, we establish a polarization entanglement-based fully connected network, which features an ultrabright integrated Bragg reflection waveguide quantum source.
We provide the first experimental implementation of source-independent quantum digital signatures using imperfect keys circumventing the necessity for private amplification.
arXiv Detail & Related papers (2024-03-18T03:29:18Z) - Guarantees on the structure of experimental quantum networks [105.13377158844727]
Quantum networks connect and supply a large number of nodes with multi-party quantum resources for secure communication, networked quantum computing and distributed sensing.
As these networks grow in size, certification tools will be required to answer questions regarding their properties.
We demonstrate a general method to guarantee that certain correlations cannot be generated in a given quantum network.
arXiv Detail & Related papers (2024-03-04T19:00:00Z) - Success probabilities in time-reversal based hybrid quantum state transfer [0.0]
We consider two memory nodes of a quantum network connected by flying qubits.
We show how and why the probability of interfacing successfully is determined by the overlap of the spectral shape of the actual flying qubit and the ideal shape.
arXiv Detail & Related papers (2024-01-16T04:38:10Z) - Certifying the Topology of Quantum Networks: Theory and Experiment [0.0]
It is crucial to characterize the topology of networks in a way that reveals the nodes between which entanglement can be reliably distributed.
Our scheme allows for distinguishing, in a scalable manner, different networks consisting of bipartite and multipartite entanglement sources.
We experimentally demonstrate our approach by certifying the topology of different six-qubit networks generated with polarized photons.
arXiv Detail & Related papers (2023-09-22T14:50:38Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
We propose quantum graph convolutional networks (QuanGCN), which learns the local message passing among nodes with the sequence of crossing-gate quantum operations.
To mitigate the inherent noises from modern quantum devices, we apply sparse constraint to sparsify the nodes' connections.
Our QuanGCN is functionally comparable or even superior than the classical algorithms on several benchmark graph datasets.
arXiv Detail & Related papers (2022-11-09T21:43:16Z) - Efficient Bipartite Entanglement Detection Scheme with a Quantum
Adversarial Solver [89.80359585967642]
Proposal reformulates the bipartite entanglement detection as a two-player zero-sum game completed by parameterized quantum circuits.
We experimentally implement our protocol on a linear optical network and exhibit its effectiveness to accomplish the bipartite entanglement detection for 5-qubit quantum pure states and 2-qubit quantum mixed states.
arXiv Detail & Related papers (2022-03-15T09:46:45Z) - An Evolutionary Pathway for the Quantum Internet Relying on Secure
Classical Repeaters [64.48099252278821]
We conceive quantum networks using secure classical repeaters combined with the quantum secure direct communication principle.
In these networks, the ciphertext gleaned from a quantum-resistant algorithm is transmitted using QSDC along the nodes.
We have presented the first experimental demonstration of a secure classical repeater based hybrid quantum network.
arXiv Detail & Related papers (2022-02-08T03:24:06Z) - Robust Multipartite Entanglement Without Entanglement Breaking [0.0]
Entangled systems in experiments may be lost or offline in distributed quantum information processing.
We propose a model for characterizing all entangled states that are breaking for losing particles.
Results show distinctive features of both single entangled systems and entangled quantum networks.
arXiv Detail & Related papers (2021-06-17T04:22:09Z) - Single-Shot Secure Quantum Network Coding for General Multiple Unicast
Network with Free One-Way Public Communication [56.678354403278206]
We propose a canonical method to derive a secure quantum network code over a multiple unicast quantum network.
Our code correctly transmits quantum states when there is no attack.
It also guarantees the secrecy of the transmitted quantum state even with the existence of an attack.
arXiv Detail & Related papers (2020-03-30T09:25:13Z) - Semidefinite tests for quantum network topologies [0.9176056742068814]
Quantum networks play a major role in long-distance communication, quantum cryptography, clock synchronization, and distributed quantum computing.
The question of which correlations a given quantum network can give rise to, remains almost uncharted.
We show that constraints on the observable covariances, previously derived for the classical case, also hold for quantum networks.
arXiv Detail & Related papers (2020-02-13T22:36:46Z) - Genuine Network Multipartite Entanglement [62.997667081978825]
We argue that a source capable of distributing bipartite entanglement can, by itself, generate genuine $k$-partite entangled states for any $k$.
We provide analytic and numerical witnesses of genuine network entanglement, and we reinterpret many past quantum experiments as demonstrations of this feature.
arXiv Detail & Related papers (2020-02-07T13:26:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.