論文の概要: A Closer Look at Parameter-Efficient Tuning in Diffusion Models
- arxiv url: http://arxiv.org/abs/2303.18181v2
- Date: Wed, 12 Apr 2023 14:41:12 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-13 17:32:57.747748
- Title: A Closer Look at Parameter-Efficient Tuning in Diffusion Models
- Title(参考訳): 拡散モデルにおけるパラメータ効率のチューニングについて
- Authors: Chendong Xiang, Fan Bao, Chongxuan Li, Hang Su, Jun Zhu
- Abstract要約: 安定拡散のような大規模拡散モデルは強力であり、様々な現実世界の応用を見出すことができる。
学習可能な小モジュールを挿入することにより,大規模拡散モデルにおけるパラメータ効率の調整について検討する。
- 参考スコア(独自算出の注目度): 39.52999446584842
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large-scale diffusion models like Stable Diffusion are powerful and find
various real-world applications while customizing such models by fine-tuning is
both memory and time inefficient. Motivated by the recent progress in natural
language processing, we investigate parameter-efficient tuning in large
diffusion models by inserting small learnable modules (termed adapters). In
particular, we decompose the design space of adapters into orthogonal factors
-- the input position, the output position as well as the function form, and
perform Analysis of Variance (ANOVA), a classical statistical approach for
analyzing the correlation between discrete (design options) and continuous
variables (evaluation metrics). Our analysis suggests that the input position
of adapters is the critical factor influencing the performance of downstream
tasks. Then, we carefully study the choice of the input position, and we find
that putting the input position after the cross-attention block can lead to the
best performance, validated by additional visualization analyses. Finally, we
provide a recipe for parameter-efficient tuning in diffusion models, which is
comparable if not superior to the fully fine-tuned baseline (e.g., DreamBooth)
with only 0.75 \% extra parameters, across various customized tasks.
- Abstract(参考訳): 安定拡散のような大規模拡散モデルは強力であり、様々な実世界のアプリケーションを見つける一方で、微調整によるモデルカスタマイズはメモリと時間の両方で非効率である。
近年の自然言語処理の進歩により, 学習可能な小モジュール(終端アダプタ)を挿入することにより, 大規模拡散モデルにおけるパラメータ効率の調整について検討した。
特に,アダプタの設計空間を直交因子(入力位置,出力位置,および関数形式)に分解し,離散(設計オプション)と連続変数(評価指標)の相関を解析するための古典的統計手法であるANOVA(Analytic of Variance)を実行する。
分析の結果,アダプタの入力位置が下流タスクの性能に影響を与える重要な要因であることが示唆された。
そして, 入力位置の選択を慎重に検討し, 追加の可視化分析により, クロスアテンションブロックの後に入力位置を置けば, 最高の性能が得られることを示した。
最後に,完全微調整ベースライン(DreamBoothなど)に匹敵せず,パラメータを0.75 %追加するだけで,様々なカスタマイズタスクに匹敵する拡散モデルのパラメータ効率性チューニングのレシピを提供する。
関連論文リスト
- Influence Functions for Scalable Data Attribution in Diffusion Models [52.92223039302037]
拡散モデルは、生成的モデリングに大きな進歩をもたらした。
しかし、彼らの普及はデータ属性と解釈可能性に関する課題を引き起こす。
本稿では,テキスト・インフルエンス・ファンクション・フレームワークを開発することにより,このような課題に対処することを目的とする。
論文 参考訳(メタデータ) (2024-10-17T17:59:02Z) - SMILE: Zero-Shot Sparse Mixture of Low-Rank Experts Construction From Pre-Trained Foundation Models [85.67096251281191]
我々は、ゼロショットスパースミクチャー(SMILE)と呼ばれるモデル融合に対する革新的なアプローチを提案する。
SMILEは、余分なデータやさらなるトレーニングなしに、ソースモデルをMoEモデルにアップスケーリングできる。
画像分類やテキスト生成タスクなど,さまざまなシナリオに対して,フル微調整とLoRA微調整を用いて広範な実験を行う。
論文 参考訳(メタデータ) (2024-08-19T17:32:15Z) - Variational Bayesian surrogate modelling with application to robust design optimisation [0.9626666671366836]
サロゲートモデルは複雑な計算モデルに対して素早く評価できる近似を提供する。
入力の不確かさと次元減少を伴う統計的代理を構築するためのベイズ推定について考察する。
コスト関数がモデル出力の平均および標準偏差の重み付け和に依存するような本質的で頑健な構造最適化問題を示す。
論文 参考訳(メタデータ) (2024-04-23T09:22:35Z) - Parameter Efficient Fine-tuning via Cross Block Orchestration for Segment Anything Model [81.55141188169621]
PEFTにクロスブロックオーケストレーション機構を組み、SAM(Segment Anything Model)の様々な下流シナリオへの適応を可能にする。
本稿では,超複素層から重みが生じる線形射影ヘッドを導入するブロック内拡張モジュールを提案する。
提案手法は,約1Kのパラメータのみを付加した新規シナリオにおいて,セグメンテーション性能を大幅に向上させる。
論文 参考訳(メタデータ) (2023-11-28T11:23:34Z) - E^2VPT: An Effective and Efficient Approach for Visual Prompt Tuning [55.50908600818483]
新しいタスクのための微調整された大規模な事前学習型ビジョンモデルは、パラメーター集約化が進んでいる。
本稿では,大規模なトランスフォーマーモデル適応のための効果的かつ効率的なビジュアルプロンプトチューニング(E2VPT)手法を提案する。
提案手法は2つのベンチマークにおいて,最先端のベースラインを上回っている。
論文 参考訳(メタデータ) (2023-07-25T19:03:21Z) - Active Finetuning: Exploiting Annotation Budget in the
Pretraining-Finetuning Paradigm [132.9949120482274]
本稿では,事前学習ファインタニングパラダイムにおけるアノテーションのためのサンプルの選択に焦点を当てる。
本研究では,アクティブな微調整タスクのためのActiveFTと呼ばれる新しい手法を提案する。
画像分類とセマンティックセグメンテーションの両方に基づくベースラインよりも優れたActiveFTの先行性能と高効率性を示す。
論文 参考訳(メタデータ) (2023-03-25T07:17:03Z) - Variational Inference with NoFAS: Normalizing Flow with Adaptive
Surrogate for Computationally Expensive Models [7.217783736464403]
マルコフ連鎖モンテカルロのようなサンプリングに基づくアプローチの使用は、それぞれの可能性評価が計算的に高価であるときに難解になる可能性がある。
変分推論と正規化フローを組み合わせた新しいアプローチは、潜在変数空間の次元と線形にしか成長しない計算コストによって特徴づけられる。
本稿では,ニューラルネットワークサロゲートモデルの正規化フローパラメータと重みを代わりに更新する最適化戦略である,適応サロゲートを用いた正規化フロー(NoFAS)を提案する。
論文 参考訳(メタデータ) (2021-08-28T14:31:45Z) - Locally Interpretable Model Agnostic Explanations using Gaussian
Processes [2.9189409618561966]
LIME(Local Interpretable Model-Agnostic Explanations)は、単一インスタンスの予測を説明する一般的なテクニックである。
局所的解釈可能なモデルのガウス過程(GP)に基づくバリエーションを提案する。
提案手法は,LIMEに比べてはるかに少ないサンプルを用いて忠実な説明を生成可能であることを示す。
論文 参考訳(メタデータ) (2021-08-16T05:49:01Z) - A Data-driven feature selection and machine-learning model benchmark for
the prediction of longitudinal dispersion coefficient [29.58577229101903]
縦方向分散(LD)係数の正確な予測は、関連するシミュレーションにおいて性能の飛躍をもたらすことができる。
本研究では, 蒸留した局所最適値と代表MLモデルとの数値比較により, 大域的最適特徴集合を提案した。
その結果,サポートベクタマシンは他のモデルよりも大幅に性能が向上していることがわかった。
論文 参考訳(メタデータ) (2021-07-16T09:50:38Z) - Controlling for sparsity in sparse factor analysis models: adaptive
latent feature sharing for piecewise linear dimensionality reduction [2.896192909215469]
本稿では,現在潜伏している特徴分解技術の鍵となる限界に対処できる,シンプルでトラクタブルな特徴割り当てモデルを提案する。
適応型因子分析(aFA)と適応型確率的原理成分分析(aPPCA)を応用し,柔軟な構造発見と次元減少を実現する。
APPCAとaFAは、生のMNISTに適用した場合と、オートエンコーダの特徴を解釈する場合の両方において、高いレベルの特徴を推測できることを示す。
論文 参考訳(メタデータ) (2020-06-22T16:09:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。