論文の概要: Learning Spiking Neural Systems with the Event-Driven Forward-Forward
Process
- arxiv url: http://arxiv.org/abs/2303.18187v1
- Date: Thu, 30 Mar 2023 02:40:28 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-03 13:18:00.492430
- Title: Learning Spiking Neural Systems with the Event-Driven Forward-Forward
Process
- Title(参考訳): イベント駆動フォワードプロセスによるスパイクニューラルネットワークの学習
- Authors: Alexander Ororbia
- Abstract要約: スパイクニューラルネットワークに対する前向きおよび予測前向き学習プロセスのイベント駆動型一般化を提案する。
神経活動を調整するためのフィードバックシナプスに依存するスパイクニューラルコーディングとは異なり、われわれのモデルは純粋にオンラインとフォワードで動作している。
- 参考スコア(独自算出の注目度): 93.4162636175265
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We develop a novel credit assignment algorithm for information processing
with spiking neurons without requiring feedback synapses. Specifically, we
propose an event-driven generalization of the forward-forward and the
predictive forward-forward learning processes for a spiking neural system that
iteratively processes sensory input over a stimulus window. As a result, the
recurrent circuit computes the membrane potential of each neuron in each layer
as a function of local bottom-up, top-down, and lateral signals, facilitating a
dynamic, layer-wise parallel form of neural computation. Unlike spiking neural
coding, which relies on feedback synapses to adjust neural electrical activity,
our model operates purely online and forward in time, offering a promising way
to learn distributed representations of sensory data patterns with temporal
spike signals. Notably, our experimental results on several pattern datasets
demonstrate that the even-driven forward-forward (ED-FF) framework works well
for training a dynamic recurrent spiking system capable of both classification
and reconstruction.
- Abstract(参考訳): 我々は,フィードバックシナプスを必要としないスパイクニューロンを用いた情報処理のための新しい信用割当アルゴリズムを開発した。
具体的には、刺激窓越しに感覚入力を反復的に処理するスパイキング神経系の前向きの事象駆動型一般化と予測前向き学習プロセスを提案する。
その結果、リカレント回路は各層内の各ニューロンの膜電位を局所的ボトムアップ、トップダウン、横方向の信号の関数として計算し、動的で層単位で並列なニューラル計算を容易にする。
神経活動を調整するためのフィードバックシナプスに依存するスパイクニューラルコーディングとは異なり、我々のモデルは純粋にオンラインとフォワードで動作し、時間的スパイク信号で感覚データパターンの分散表現を学習する有望な方法を提供する。
特に,いくつかのパターンデータセットに対する実験結果から,偶発駆動前向き(ED-FF)フレームワークが,分類と再構成の両立が可能な動的再帰スパイクシステムの訓練に有効であることが示された。
関連論文リスト
- Retinal Vessel Segmentation via Neuron Programming [17.609169389489633]
本稿では,神経レベルでのネットワークの表現能力を高めるため,ニューラルネット設計における新しいアプローチであるニューラルネットプログラミングについて紹介する。
総合的な実験により、ニューロンプログラミングは網膜の血液分画において競合的な性能を発揮することが検証された。
論文 参考訳(メタデータ) (2024-11-17T16:03:30Z) - Contrastive Learning in Memristor-based Neuromorphic Systems [55.11642177631929]
スパイクニューラルネットワークは、現代のバックプロパゲーションによって訓練されたディープネットワークに直面する重要な制約の多くを横取りする、ニューロンベースのモデルの重要なファミリーとなっている。
本研究では,前向き・後向き学習のニューロモルフィック形式であるコントラッシブ・シグナル依存型塑性(CSDP)の概念実証を設計し,検討する。
論文 参考訳(メタデータ) (2024-09-17T04:48:45Z) - Enhancing learning in spiking neural networks through neuronal heterogeneity and neuromodulatory signaling [52.06722364186432]
人工ニューラルネットワーク(ANN)の強化のための生物学的インフォームドフレームワークを提案する。
提案したデュアルフレームアプローチは、多様なスパイキング動作をエミュレートするためのスパイキングニューラルネットワーク(SNN)の可能性を強調している。
提案手法は脳にインスパイアされたコンパートメントモデルとタスク駆動型SNN, バイオインスピレーション, 複雑性を統合している。
論文 参考訳(メタデータ) (2024-07-05T14:11:28Z) - Evolving Self-Assembling Neural Networks: From Spontaneous Activity to Experience-Dependent Learning [7.479827648985631]
本稿では, 自己組織型ニューラルネットワークを, 活動と報酬に依存した方法でシナプス的, 構造的可塑性のクラスとして提案する。
その結果、ランダムに接続されたネットワークや空きネットワークから、異なる制御タスクの経験からモデルが学習できることが示されている。
論文 参考訳(メタデータ) (2024-06-14T07:36:21Z) - Brain-Inspired Machine Intelligence: A Survey of
Neurobiologically-Plausible Credit Assignment [65.268245109828]
本稿では,神経生物学にインスパイアされた,あるいは動機付けられた人工ニューラルネットワークにおける信用割当を行うアルゴリズムについて検討する。
我々は、脳にインスパイアされた学習スキームを6つの一般的なファミリーにまとめ、これらを誤りのバックプロパゲーションの文脈で検討する。
本研究の成果は,神経ミメティックシステムとその構成的学習プロセスの今後の発展を促進することを目的としている。
論文 参考訳(メタデータ) (2023-12-01T05:20:57Z) - POPPINS : A Population-Based Digital Spiking Neuromorphic Processor with
Integer Quadratic Integrate-and-Fire Neurons [50.591267188664666]
2つの階層構造を持つ180nmプロセス技術において,集団に基づくディジタルスパイキングニューロモルフィックプロセッサを提案する。
提案手法は,生体模倣型ニューロモルフィックシステム,低消費電力,低遅延推論処理アプリケーションの開発を可能にする。
論文 参考訳(メタデータ) (2022-01-19T09:26:34Z) - Evolving spiking neuron cellular automata and networks to emulate in
vitro neuronal activity [0.0]
我々は生体内における生体ニューロンの行動パターンをエミュレートするスパイキング神経系を生産する。
我々のモデルは、ネットワーク全体の同期レベルを生成できた。
トップパフォーマンスモデルのゲノムは、生成した活動の複雑さを決定する上で、モデル内の接続の興奮性と密度が重要な役割を果たすことを示している。
論文 参考訳(メタデータ) (2021-10-15T17:55:04Z) - Recurrent Neural Network Learning of Performance and Intrinsic
Population Dynamics from Sparse Neural Data [77.92736596690297]
本稿では,RNNの入出力動作だけでなく,内部ネットワークのダイナミクスも学習できる新しいトレーニング戦略を提案する。
提案手法は、RNNを訓練し、生理学的にインスパイアされた神経モデルの内部ダイナミクスと出力信号を同時に再現する。
注目すべきは、トレーニングアルゴリズムがニューロンの小さなサブセットの活性に依存する場合であっても、内部動力学の再現が成功することである。
論文 参考訳(メタデータ) (2020-05-05T14:16:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。