論文の概要: Evolving Self-Assembling Neural Networks: From Spontaneous Activity to Experience-Dependent Learning
- arxiv url: http://arxiv.org/abs/2406.09787v1
- Date: Fri, 14 Jun 2024 07:36:21 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-17 14:44:14.234166
- Title: Evolving Self-Assembling Neural Networks: From Spontaneous Activity to Experience-Dependent Learning
- Title(参考訳): 自己集合型ニューラルネットワークの進化:自然活動から経験依存学習へ
- Authors: Erwan Plantec, Joachin W. Pedersen, Milton L. Montero, Eleni Nisioti, Sebastian Risi,
- Abstract要約: 本稿では, 自己組織型ニューラルネットワークを, 活動と報酬に依存した方法でシナプス的, 構造的可塑性のクラスとして提案する。
その結果、ランダムに接続されたネットワークや空きネットワークから、異なる制御タスクの経験からモデルが学習できることが示されている。
- 参考スコア(独自算出の注目度): 7.479827648985631
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Biological neural networks are characterized by their high degree of plasticity, a core property that enables the remarkable adaptability of natural organisms. Importantly, this ability affects both the synaptic strength and the topology of the nervous systems. Artificial neural networks, on the other hand, have been mainly designed as static, fully connected structures that can be notoriously brittle in the face of changing environments and novel inputs. Building on previous works on Neural Developmental Programs (NDPs), we propose a class of self-organizing neural networks capable of synaptic and structural plasticity in an activity and reward-dependent manner which we call Lifelong Neural Developmental Program (LNDP). We present an instance of such a network built on the graph transformer architecture and propose a mechanism for pre-experience plasticity based on the spontaneous activity of sensory neurons. Our results demonstrate the ability of the model to learn from experiences in different control tasks starting from randomly connected or empty networks. We further show that structural plasticity is advantageous in environments necessitating fast adaptation or with non-stationary rewards.
- Abstract(参考訳): 生物学的ニューラルネットワークは、天然生物の顕著な適応性を可能にするコア特性である高い可塑性によって特徴づけられる。
重要なことに、この能力はシナプスの強さと神経系のトポロジーの両方に影響を及ぼす。
一方、ニューラルネットワークは、主に静的で完全に接続された構造として設計されており、環境の変化や新しい入力に直面して不安定なことが知られている。
これまでのニューラル・デベロップメント・プログラム (NDP) の研究に基づいて, 生活型ニューラル・デベロップメント・プログラム (LNDP) と呼ばれる, 活動的, 報酬的方法でシナプス的, 構造的可塑性を有する自己組織化型ニューラル・ネットワークのクラスを提案する。
本稿では、グラフトランスアーキテクチャ上に構築されたそのようなネットワークの例を示し、感覚ニューロンの自発的な活動に基づく実験前の可塑性のメカニズムを提案する。
その結果、ランダムに接続されたネットワークや空きネットワークから、異なる制御タスクの経験からモデルが学習できることが示されている。
さらに、構造的塑性は、迅速な適応を必要とする環境や、非定常的な報酬を必要とする環境において有利であることを示す。
関連論文リスト
- Artificial Kuramoto Oscillatory Neurons [65.16453738828672]
しきい値単位の動的代替として人工内蔵ニューロン(AKOrN)を導入する。
このアイデアは、幅広いタスクにまたがってパフォーマンス改善をもたらすことを示しています。
これらの経験的結果は、神経表現の最も基本的なレベルにおいて、私たちの仮定の重要性を示していると信じている。
論文 参考訳(メタデータ) (2024-10-17T17:47:54Z) - Contrastive Learning in Memristor-based Neuromorphic Systems [55.11642177631929]
スパイクニューラルネットワークは、現代のバックプロパゲーションによって訓練されたディープネットワークに直面する重要な制約の多くを横取りする、ニューロンベースのモデルの重要なファミリーとなっている。
本研究では,前向き・後向き学習のニューロモルフィック形式であるコントラッシブ・シグナル依存型塑性(CSDP)の概念実証を設計し,検討する。
論文 参考訳(メタデータ) (2024-09-17T04:48:45Z) - Enhancing learning in spiking neural networks through neuronal heterogeneity and neuromodulatory signaling [52.06722364186432]
人工ニューラルネットワーク(ANN)の強化のための生物学的インフォームドフレームワークを提案する。
提案したデュアルフレームアプローチは、多様なスパイキング動作をエミュレートするためのスパイキングニューラルネットワーク(SNN)の可能性を強調している。
提案手法は脳にインスパイアされたコンパートメントモデルとタスク駆動型SNN, バイオインスピレーション, 複雑性を統合している。
論文 参考訳(メタデータ) (2024-07-05T14:11:28Z) - Brain-Inspired Machine Intelligence: A Survey of
Neurobiologically-Plausible Credit Assignment [65.268245109828]
本稿では,神経生物学にインスパイアされた,あるいは動機付けられた人工ニューラルネットワークにおける信用割当を行うアルゴリズムについて検討する。
我々は、脳にインスパイアされた学習スキームを6つの一般的なファミリーにまとめ、これらを誤りのバックプロパゲーションの文脈で検討する。
本研究の成果は,神経ミメティックシステムとその構成的学習プロセスの今後の発展を促進することを目的としている。
論文 参考訳(メタデータ) (2023-12-01T05:20:57Z) - Towards Self-Assembling Artificial Neural Networks through Neural
Developmental Programs [10.524752369156339]
生物学的神経系は、現在の人工ニューラルネットワークと根本的に異なる方法で生成される。
対照的に、生物学的神経系は動的自己組織化過程を通じて成長する。
論文 参考訳(メタデータ) (2023-07-17T01:58:52Z) - Learning to Act through Evolution of Neural Diversity in Random Neural
Networks [9.387749254963595]
ほとんどの人工ニューラルネットワーク(ANN)では、神経計算は通常すべてのニューロン間で共有される活性化関数に抽象化される。
本稿では,複雑な計算を行うことができる多様なニューロンの集合を実現するために,神経中心パラメータの最適化を提案する。
論文 参考訳(メタデータ) (2023-05-25T11:33:04Z) - Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits [61.94533459151743]
この研究は、スパイキングネットワークのシナプスを調整するための神経生物学的に動機づけられたスキームを設計することの課題に対処する。
我々の実験シミュレーションは、繰り返しスパイクネットワークを訓練する際、他の生物学的に証明可能なアプローチに対して一貫した優位性を示す。
論文 参考訳(メタデータ) (2023-03-30T02:40:28Z) - Self-Evolutionary Reservoir Computer Based on Kuramoto Model [1.7072337666116733]
生物学的にインスパイアされたニューラルネットワークとして、貯水池コンピューティング(RC)は情報処理においてユニークなアドバンテージを持っている。
本研究では,人的知識を必要とせず,手元にある特定の問題に適応できる構造的自律開発貯水池計算モデルを提案する。
論文 参考訳(メタデータ) (2023-01-25T15:53:39Z) - Developmental Plasticity-inspired Adaptive Pruning for Deep Spiking and Artificial Neural Networks [11.730984231143108]
発達的可塑性は、継続的な学習中に脳の構造を形成する際に顕著な役割を果たす。
ディープ人工知能ニューラルネットワーク(ANN)とスパイクニューラルネットワーク(SNN)の既存のネットワーク圧縮方法は、脳の発達する可塑性機構からほとんどインスピレーションを受けない。
本稿では, 樹状突起, シナプス, ニューロンの適応的発達的プルーニングからインスピレーションを得て, 塑性刺激による適応的プルーニング(DPAP)法を提案する。
論文 参考訳(メタデータ) (2022-11-23T05:26:51Z) - Continuous Learning and Adaptation with Membrane Potential and
Activation Threshold Homeostasis [91.3755431537592]
本稿では,MPATH(Membrane Potential and Activation Threshold Homeostasis)ニューロンモデルを提案する。
このモデルにより、ニューロンは入力が提示されたときに自動的に活性を調節することで動的平衡の形式を維持することができる。
実験は、モデルがその入力から適応し、継続的に学習する能力を示す。
論文 参考訳(メタデータ) (2021-04-22T04:01:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。