Quantum thermal state preparation for near-term quantum processors
- URL: http://arxiv.org/abs/2506.21318v1
- Date: Thu, 26 Jun 2025 14:33:46 GMT
- Title: Quantum thermal state preparation for near-term quantum processors
- Authors: Jerome Lloyd, Dmitry A. Abanin,
- Abstract summary: Preparation of quantum thermal states of many-body systems is a key computational challenge for quantum processors.<n>We provide a simple and efficient algorithm for thermal state preparation, combining engineered bath resetting and modulated system-bath coupling.<n>Our algorithm provides a path to efficient quantum simulation of quantum-correlated states at finite temperature with current and near-term quantum processors.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Preparation of quantum thermal states of many-body systems is a key computational challenge for quantum processors, with applications in physics, chemistry, and classical optimization. We provide a simple and efficient algorithm for thermal state preparation, combining engineered bath resetting and modulated system-bath coupling to derive a quantum channel approximately satisfying quantum detailed balance relations. We show that the fixed point $\hat\sigma$ of the channel approximates the Gibbs state as $\|\hat\sigma -\hat\sigma_\beta\|\sim \theta^2$, where $\theta$ is the system-bath coupling and $\hat\sigma_\beta \propto e^{-\beta \hat H_S}$. We provide extensive numerics, for the example of the 2D Quantum Ising model, confirming that the protocol successfully prepares the thermal state throughout the finite-temperature phase diagram, including near the quantum phase transition. Our algorithm provides a path to efficient quantum simulation of quantum-correlated states at finite temperature with current and near-term quantum processors.
Related papers
- Improving thermal state preparation of Sachdev-Ye-Kitaev model with reinforcement learning on quantum hardware [0.0]
This paper integrates reinforcement learning with convolutional neural networks to optimize a quantum circuit and its parameters.<n>We demonstrate the effectiveness of the RL framework in both noiseless and noisy quantum hardware environments.<n>This work advances a scalable, RL-based framework with applications for quantum gravity studies and out-of-time-ordered thermal computation.
arXiv Detail & Related papers (2025-01-20T12:41:17Z) - Parallel Quantum Computing Simulations via Quantum Accelerator Platform Virtualization [44.99833362998488]
We present a model for parallelizing simulation of quantum circuit executions.
The model can take advantage of its backend-agnostic features, enabling parallel quantum circuit execution over any target backend.
arXiv Detail & Related papers (2024-06-05T17:16:07Z) - Quantum Fisher Information for Different States and Processes in Quantum
Chaotic Systems [77.34726150561087]
We compute the quantum Fisher information (QFI) for both an energy eigenstate and a thermal density matrix.
We compare our results with earlier results for a local unitary transformation.
arXiv Detail & Related papers (2023-04-04T09:28:19Z) - Quantum Thermal State Preparation [39.91303506884272]
We introduce simple continuous-time quantum Gibbs samplers for simulating quantum master equations.
We construct the first provably accurate and efficient algorithm for preparing certain purified Gibbs states.
Our algorithms' costs have a provable dependence on temperature, accuracy, and the mixing time.
arXiv Detail & Related papers (2023-03-31T17:29:56Z) - Adaptive variational quantum minimally entangled typical thermal states
for finite temperature simulations [0.0]
We describe and benchmark a quantum computing version of the minimally entangled typical thermal states (METTS) algorithm.
The algorithm, which we name AVQMETTS, dynamically generates compact and problem-specific quantum circuits.
arXiv Detail & Related papers (2023-01-06T16:40:06Z) - Probing finite-temperature observables in quantum simulators of spin
systems with short-time dynamics [62.997667081978825]
We show how finite-temperature observables can be obtained with an algorithm motivated from the Jarzynski equality.
We show that a finite temperature phase transition in the long-range transverse field Ising model can be characterized in trapped ion quantum simulators.
arXiv Detail & Related papers (2022-06-03T18:00:02Z) - Implementation of a two-stroke quantum heat engine with a collisional
model [50.591267188664666]
We put forth a quantum simulation of a stroboscopic two-stroke thermal engine in the IBMQ processor.
The system consists of a quantum spin chain connected to two baths at their boundaries, prepared at different temperatures using the variational quantum thermalizer algorithm.
arXiv Detail & Related papers (2022-03-25T16:55:08Z) - Kernel-Function Based Quantum Algorithms for Finite Temperature Quantum
Simulation [5.188498150496968]
We present a quantum kernel function (QKFE) algorithm for solving thermodynamic properties of quantum many-body systems.
As compared to its classical counterpart, namely the kernel method (KPM), QKFE has an exponential advantage in the cost of both time and memory.
We demonstrate its efficiency with applications to one and two-dimensional quantum spin models, and a fermionic lattice.
arXiv Detail & Related papers (2022-02-02T18:00:04Z) - Tensor Network Quantum Virtual Machine for Simulating Quantum Circuits
at Exascale [57.84751206630535]
We present a modernized version of the Quantum Virtual Machine (TNQVM) which serves as a quantum circuit simulation backend in the e-scale ACCelerator (XACC) framework.
The new version is based on the general purpose, scalable network processing library, ExaTN, and provides multiple quantum circuit simulators.
By combining the portable XACC quantum processors and the scalable ExaTN backend we introduce an end-to-end virtual development environment which can scale from laptops to future exascale platforms.
arXiv Detail & Related papers (2021-04-21T13:26:42Z) - Continuous-variable assisted thermal quantum simulation [1.6530012863603747]
We present an experimentally feasible quantum algorithm assisted with continuous-variable simulating for quantum systems at finite temperatures.
It is found that the important crossover phase diagram of the Kitaev ring can be accurately simulated by a quantum computer with only a few qubits.
We propose a protocol implementable with superconducting or trapped ion quantum computers.
arXiv Detail & Related papers (2020-05-31T09:04:02Z) - Quantum Statistical Complexity Measure as a Signalling of Correlation
Transitions [55.41644538483948]
We introduce a quantum version for the statistical complexity measure, in the context of quantum information theory, and use it as a signalling function of quantum order-disorder transitions.
We apply our measure to two exactly solvable Hamiltonian models, namely: the $1D$-Quantum Ising Model and the Heisenberg XXZ spin-$1/2$ chain.
We also compute this measure for one-qubit and two-qubit reduced states for the considered models, and analyse its behaviour across its quantum phase transitions for finite system sizes as well as in the thermodynamic limit by using Bethe ansatz.
arXiv Detail & Related papers (2020-02-05T00:45:21Z) - A Variational Quantum Algorithm for Preparing Quantum Gibbs States [0.22559617939136506]
Preparation of Gibbs distributions is an important task for quantum computation.
We present a variational approach to preparing Gibbs states that is based on minimizing the free energy of a quantum system.
arXiv Detail & Related papers (2020-01-31T20:52:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.