論文の概要: Resolution-Invariant Image Classification based on Fourier Neural
Operators
- arxiv url: http://arxiv.org/abs/2304.01227v1
- Date: Sun, 2 Apr 2023 10:23:36 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-05 17:14:35.893052
- Title: Resolution-Invariant Image Classification based on Fourier Neural
Operators
- Title(参考訳): フーリエニューラル演算子に基づく分解能不変画像分類
- Authors: Samira Kabri, Tim Roith, Daniel Tenbrinck, Martin Burger
- Abstract要約: 画像分類における一般化ニューラルネットワーク (FNO) の利用について, 標準畳み込みニューラルネットワーク (CNN) と比較して検討した。
我々は、ルベーグ空間上の連続およびFr'echet微分可能なニューラル作用素の例としてFNOアーキテクチャを導出する。
- 参考スコア(独自算出の注目度): 1.3190581566723918
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper we investigate the use of Fourier Neural Operators (FNOs) for
image classification in comparison to standard Convolutional Neural Networks
(CNNs). Neural operators are a discretization-invariant generalization of
neural networks to approximate operators between infinite dimensional function
spaces. FNOs - which are neural operators with a specific parametrization -
have been applied successfully in the context of parametric PDEs. We derive the
FNO architecture as an example for continuous and Fr\'echet-differentiable
neural operators on Lebesgue spaces. We further show how CNNs can be converted
into FNOs and vice versa and propose an interpolation-equivariant adaptation of
the architecture.
- Abstract(参考訳): 本稿では,画像分類におけるフーリエニューラルネットワーク(fnos)の利用について,標準畳み込みニューラルネットワーク(cnns)と比較して検討する。
ニューラル作用素は、無限次元関数空間間の近似作用素に対するニューラルネットワークの離散化不変な一般化である。
特定のパラメトリゼーションを持つニューラル演算子であるFNOは、パラメトリックPDEの文脈でうまく適用されている。
我々は、ルベーグ空間上の連続およびFr'echet微分可能なニューラル作用素の例としてFNOアーキテクチャを導出する。
さらに, cnn を fnos に変換する方法を示し, アーキテクチャの補間同変適応を提案する。
関連論文リスト
- Neural Operators with Localized Integral and Differential Kernels [77.76991758980003]
本稿では,2つのフレームワークで局所的な特徴をキャプチャできる演算子学習の原理的アプローチを提案する。
我々はCNNのカーネル値の適切なスケーリングの下で微分演算子を得ることを示す。
局所積分演算子を得るには、離散連続的畳み込みに基づくカーネルの適切な基底表現を利用する。
論文 参考訳(メタデータ) (2024-02-26T18:59:31Z) - Permutation Equivariant Neural Functionals [92.0667671999604]
この研究は、他のニューラルネットワークの重みや勾配を処理できるニューラルネットワークの設計を研究する。
隠れた層状ニューロンには固有の順序がないため, 深いフィードフォワードネットワークの重みに生じる置換対称性に着目する。
実験の結果, 置換同変ニューラル関数は多種多様なタスクに対して有効であることがわかった。
論文 参考訳(メタデータ) (2023-02-27T18:52:38Z) - Interrelation of equivariant Gaussian processes and convolutional neural
networks [77.34726150561087]
現在、ニューラルネットワーク(NN)とガウス過程(GP)の関係に基づく機械学習(ML)には、かなり有望な新しい傾向がある。
本研究では、ベクトル値のニューロン活性化を持つ2次元ユークリッド群とそれに対応する独立に導入された同変ガウス過程(GP)との関係を確立する。
論文 参考訳(メタデータ) (2022-09-17T17:02:35Z) - Bounding The Rademacher Complexity of Fourier Neural Operator [3.4960814625958787]
フーリエニューラル演算子(フーリエニューラル演算子、英: Fourier Neural operator、FNO)は、物理学に着想を得た機械学習手法の1つである。
本研究では,特定の群ノルムに基づくFNOのラデマッハ複雑性の境界について検討した。
さらに, 経験的一般化誤差とFNOのキャパシティの相関について検討した。
論文 参考訳(メタデータ) (2022-09-12T11:11:43Z) - Pseudo-Differential Neural Operator: Generalized Fourier Neural Operator
for Learning Solution Operators of Partial Differential Equations [14.43135909469058]
本研究では,FNOにおけるフーリエ積分作用素を解析・一般化するための新しいテキスト型微分積分演算子(PDIO)を提案する。
提案モデルの有効性をDarcyフローとNavier-Stokes方程式を用いて実験的に検証した。
論文 参考訳(メタデータ) (2022-01-28T07:22:32Z) - Nonlocal Kernel Network (NKN): a Stable and Resolution-Independent Deep
Neural Network [23.465930256410722]
非ローカルカーネルネットワーク(NKN)は、ディープニューラルネットワークを特徴とする解像度独立である。
NKNは、支配方程式の学習や画像の分類など、さまざまなタスクを処理できる。
論文 参考訳(メタデータ) (2022-01-06T19:19:35Z) - Neural Operator: Learning Maps Between Function Spaces [75.93843876663128]
本稿では,無限次元関数空間間を写像する演算子,いわゆるニューラル演算子を学習するためのニューラルネットワークの一般化を提案する。
提案したニューラル作用素に対して普遍近似定理を証明し、任意の非線形連続作用素を近似することができることを示す。
ニューラル作用素に対する重要な応用は、偏微分方程式の解作用素に対する代理写像を学習することである。
論文 参考訳(メタデータ) (2021-08-19T03:56:49Z) - Stability of Algebraic Neural Networks to Small Perturbations [179.55535781816343]
Algebraic Neural Network (AlgNN) は、代数的信号モデルと関連する各層のカスケードで構成されている。
畳み込みという形式的な概念を用いるアーキテクチャは、シフト演算子の特定の選択を超えて、いかに安定であるかを示す。
論文 参考訳(メタデータ) (2020-10-22T09:10:16Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
一般化構造方程式モデル(SEM)のクラスにおける推定について検討する。
線形作用素方程式をmin-maxゲームとして定式化し、ニューラルネットワーク(NN)でパラメータ化し、勾配勾配を用いてニューラルネットワークのパラメータを学習する。
提案手法は,サンプル分割を必要とせず,確固とした収束性を持つNNをベースとしたSEMの抽出可能な推定手順を初めて提供する。
論文 参考訳(メタデータ) (2020-07-02T17:55:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。