On Efficient Estimation of Distributional Treatment Effects under Covariate-Adaptive Randomization
- URL: http://arxiv.org/abs/2506.05945v1
- Date: Fri, 06 Jun 2025 10:14:38 GMT
- Title: On Efficient Estimation of Distributional Treatment Effects under Covariate-Adaptive Randomization
- Authors: Undral Byambadalai, Tomu Hirata, Tatsushi Oka, Shota Yasui,
- Abstract summary: We propose a flexible distribution regression framework that leverages off-the-shelf machine learning methods.<n>We establish the distribution of the proposed estimator and introduce a valid inference procedure.
- Score: 6.324765782436764
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper focuses on the estimation of distributional treatment effects in randomized experiments that use covariate-adaptive randomization (CAR). These include designs such as Efron's biased-coin design and stratified block randomization, where participants are first grouped into strata based on baseline covariates and assigned treatments within each stratum to ensure balance across groups. In practice, datasets often contain additional covariates beyond the strata indicators. We propose a flexible distribution regression framework that leverages off-the-shelf machine learning methods to incorporate these additional covariates, enhancing the precision of distributional treatment effect estimates. We establish the asymptotic distribution of the proposed estimator and introduce a valid inference procedure. Furthermore, we derive the semiparametric efficiency bound for distributional treatment effects under CAR and demonstrate that our regression-adjusted estimator attains this bound. Simulation studies and empirical analyses of microcredit programs highlight the practical advantages of our method.
Related papers
- A Generative Framework for Causal Estimation via Importance-Weighted Diffusion Distillation [55.53426007439564]
Estimating individualized treatment effects from observational data is a central challenge in causal inference.<n>In inverse probability weighting (IPW) is a well-established solution to this problem, but its integration into modern deep learning frameworks remains limited.<n>We propose Importance-Weighted Diffusion Distillation (IWDD), a novel generative framework that combines the pretraining of diffusion models with importance-weighted score distillation.
arXiv Detail & Related papers (2025-05-16T17:00:52Z) - Semiparametric conformal prediction [79.6147286161434]
We construct a conformal prediction set accounting for the joint correlation structure of the vector-valued non-conformity scores.<n>We flexibly estimate the joint cumulative distribution function (CDF) of the scores.<n>Our method yields desired coverage and competitive efficiency on a range of real-world regression problems.
arXiv Detail & Related papers (2024-11-04T14:29:02Z) - Estimating Distributional Treatment Effects in Randomized Experiments: Machine Learning for Variance Reduction [6.909352249236339]
We propose a novel regression adjustment method designed for estimating distributional treatment effect parameters in randomized experiments.
Our approach incorporates pre-treatment co-treatments into a distributional regression framework, utilizing machine learning techniques to improve the precision of distributional treatment effect estimators.
arXiv Detail & Related papers (2024-07-22T20:28:29Z) - Collaborative Heterogeneous Causal Inference Beyond Meta-analysis [68.4474531911361]
We propose a collaborative inverse propensity score estimator for causal inference with heterogeneous data.
Our method shows significant improvements over the methods based on meta-analysis when heterogeneity increases.
arXiv Detail & Related papers (2024-04-24T09:04:36Z) - Distributed Markov Chain Monte Carlo Sampling based on the Alternating
Direction Method of Multipliers [143.6249073384419]
In this paper, we propose a distributed sampling scheme based on the alternating direction method of multipliers.
We provide both theoretical guarantees of our algorithm's convergence and experimental evidence of its superiority to the state-of-the-art.
In simulation, we deploy our algorithm on linear and logistic regression tasks and illustrate its fast convergence compared to existing gradient-based methods.
arXiv Detail & Related papers (2024-01-29T02:08:40Z) - Flexible Nonparametric Inference for Causal Effects under the Front-Door Model [2.6900047294457683]
We develop novel one-step and targeted minimum loss-based estimators for both the average treatment effect and the average treatment effect on the treated under front-door assumptions.<n>Our estimators are built on multiple parameterizations of the observed data distribution, including approaches that avoid mediator density entirely.<n>We show how these constraints can be leveraged to improve the efficiency of causal effect estimators.
arXiv Detail & Related papers (2023-12-15T22:04:53Z) - Adaptive Annealed Importance Sampling with Constant Rate Progress [68.8204255655161]
Annealed Importance Sampling (AIS) synthesizes weighted samples from an intractable distribution.
We propose the Constant Rate AIS algorithm and its efficient implementation for $alpha$-divergences.
arXiv Detail & Related papers (2023-06-27T08:15:28Z) - A Bayesian Semiparametric Method For Estimating Causal Quantile Effects [1.1118668841431563]
We propose a semiparametric conditional distribution regression model that allows inference on any functionals of counterfactual distributions.
We show via simulations that the use of double balancing score for confounding adjustment improves performance over adjusting for any single score alone.
We apply the proposed method to the North Carolina birth weight dataset to analyze the effect of maternal smoking on infant's birth weight.
arXiv Detail & Related papers (2022-11-03T05:15:18Z) - Random Forest Weighted Local Fréchet Regression with Random Objects [18.128663071848923]
We propose a novel random forest weighted local Fr'echet regression paradigm.<n>Our first method uses these weights as the local average to solve the conditional Fr'echet mean.<n>Second method performs local linear Fr'echet regression, both significantly improving existing Fr'echet regression methods.
arXiv Detail & Related papers (2022-02-10T09:10:59Z) - Two-Stage TMLE to Reduce Bias and Improve Efficiency in Cluster
Randomized Trials [0.0]
Cluster randomized trials (CRTs) randomly assign an intervention to groups of individuals, and measure outcomes on individuals in those groups.
Findings are often missing for some individuals within clusters.
CRTs often randomize limited numbers of clusters, resulting in chance imbalances on baseline outcome predictors between arms.
arXiv Detail & Related papers (2021-06-29T21:47:30Z) - Deconfounding Scores: Feature Representations for Causal Effect
Estimation with Weak Overlap [140.98628848491146]
We introduce deconfounding scores, which induce better overlap without biasing the target of estimation.
We show that deconfounding scores satisfy a zero-covariance condition that is identifiable in observed data.
In particular, we show that this technique could be an attractive alternative to standard regularizations.
arXiv Detail & Related papers (2021-04-12T18:50:11Z) - Weighting-Based Treatment Effect Estimation via Distribution Learning [14.438302755258547]
We develop a distribution learning-based weighting method for treatment effect estimation.
Our method outperforms several cutting-edge weighting-only benchmarking methods.
It maintains its advantage under a doubly-robust estimation framework.
arXiv Detail & Related papers (2020-12-26T20:15:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.