論文の概要: Neural Field Convolutions by Repeated Differentiation
- arxiv url: http://arxiv.org/abs/2304.01834v1
- Date: Tue, 4 Apr 2023 14:39:44 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-05 13:29:47.996461
- Title: Neural Field Convolutions by Repeated Differentiation
- Title(参考訳): 反復微分によるニューラルフィールド畳み込み
- Authors: Ntumba Elie Nsampi, Adarsh Djeacoumar, Hans-Peter Seidel, Tobias
Ritschel, Thomas Leimk\"uhler
- Abstract要約: 本稿では,ニューラルネットワークなどの一般的な連続信号を用いて連続的な畳み込みを行う手法を提案する。
我々は、様々なデータモダリティと空間的に異なるカーネルに対して、我々のアプローチを実証する。
- 参考スコア(独自算出の注目度): 29.165192687221047
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neural fields are evolving towards a general-purpose continuous
representation for visual computing. Yet, despite their numerous appealing
properties, they are hardly amenable to signal processing. As a remedy, we
present a method to perform general continuous convolutions with general
continuous signals such as neural fields. Observing that piecewise polynomial
kernels reduce to a sparse set of Dirac deltas after repeated differentiation,
we leverage convolution identities and train a repeated integral field to
efficiently execute large-scale convolutions. We demonstrate our approach on a
variety of data modalities and spatially-varying kernels.
- Abstract(参考訳): ニューラルフィールドは、ビジュアルコンピューティングのための汎用的な連続表現へと進化している。
しかし、多くの魅力的な特性にもかかわらず、信号処理には適さない。
本研究では,ニューラルネットワークなどの一般連続信号を用いた一般連続畳み込みを行う手法を提案する。
分割多項式核は、繰り返し微分された後にディラックデルタのスパース集合に還元され、畳み込みアイデンティティを活用し、繰り返し積分場を訓練し、大規模畳み込みを効率的に行う。
我々は,様々なデータモダリティと空間変動するカーネルに対する我々のアプローチを実証する。
関連論文リスト
- ReFiNe: Recursive Field Networks for Cross-modal Multi-scene Representation [37.24514001359966]
連続神経場として表現される複数の形状を、従来より高い精度で符号化する方法を示す。
我々は、データセット毎に1つのネットワークで、最先端のマルチシーン再構成と圧縮結果を実証する。
論文 参考訳(メタデータ) (2024-06-06T17:55:34Z) - Affine Invariance in Continuous-Domain Convolutional Neural Networks [6.019182604573028]
本研究では,連続領域畳み込みニューラルネットワークにおけるアフィン不変性について検討する。
アフィン変換における2つの入力信号の類似性を評価するための新しい基準を導入する。
私たちの研究は最終的には、実用的なディープラーニングパイプラインが扱える幾何学的変換の範囲を広げることができます。
論文 参考訳(メタデータ) (2023-11-13T14:17:57Z) - SMPConv: Self-moving Point Representations for Continuous Convolution [4.652175470883851]
本稿では,ニューラルネットワークを使わずに連続的な畳み込みを構築するための代替手法を提案する。
重みパラメータが自由に動く自己移動点表現と連続関数の実装にスキームを用いる。
その軽量な構造のため、我々はまず大規模な環境で連続的畳み込みの有効性を実証する。
論文 参考訳(メタデータ) (2023-04-05T09:36:30Z) - Tangent Bundle Convolutional Learning: from Manifolds to Cellular Sheaves and Back [84.61160272624262]
この畳み込み操作に基づいて,タンジェントバンドルフィルタとタンジェントバンドルニューラルネットワーク(TNN)を定義する。
タンジェントバンドルフィルタは、スカラー多様体フィルタ、グラフフィルタ、標準畳み込みフィルタを連続的に一般化するスペクトル表現を許容する。
提案したアーキテクチャが様々な学習課題に与える影響を数値的に評価する。
論文 参考訳(メタデータ) (2023-03-20T17:57:15Z) - Instance-Dependent Generalization Bounds via Optimal Transport [51.71650746285469]
既存の一般化境界は、現代のニューラルネットワークの一般化を促進する重要な要因を説明することができない。
データ空間における学習予測関数の局所リプシッツ正則性に依存するインスタンス依存の一般化境界を導出する。
ニューラルネットワークに対する一般化境界を実験的に解析し、有界値が有意義であることを示し、トレーニング中の一般的な正規化方法の効果を捉える。
論文 参考訳(メタデータ) (2022-11-02T16:39:42Z) - Convolutional Learning on Multigraphs [153.20329791008095]
我々は、多グラフ上の畳み込み情報処理を開発し、畳み込み多グラフニューラルネットワーク(MGNN)を導入する。
情報拡散の複雑なダイナミクスを多グラフのエッジのクラス間で捉えるために、畳み込み信号処理モデルを定式化する。
我々は,計算複雑性を低減するため,サンプリング手順を含むマルチグラフ学習アーキテクチャを開発した。
導入されたアーキテクチャは、最適な無線リソース割り当てとヘイトスピーチローカライゼーションタスクに適用され、従来のグラフニューラルネットワークよりも優れたパフォーマンスを提供する。
論文 参考訳(メタデータ) (2022-09-23T00:33:04Z) - Meta-Learning Sparse Implicit Neural Representations [69.15490627853629]
入射神経表現は、一般的な信号を表す新しい道である。
現在のアプローチは、多数の信号やデータセットに対してスケールすることが難しい。
メタ学習型スパースニューラル表現は,高密度メタ学習モデルよりもはるかに少ない損失が得られることを示す。
論文 参考訳(メタデータ) (2021-10-27T18:02:53Z) - Factorized Gaussian Process Variational Autoencoders [6.866104126509981]
変分オートエンコーダは、しばしば等方的ガウス先行と平均体後部を仮定するので、潜在変数間の類似性や一貫性を期待するシナリオでは構造を利用できない。
多くのデータセットに存在する補助的特徴の独立性を活用することにより、これらのモデルのよりスケーラブルな拡張を提案する。
論文 参考訳(メタデータ) (2020-11-14T10:24:10Z) - Recyclable Gaussian Processes [0.0]
ガウス過程に対する独立な変分近似をリサイクルするための新しい枠組みを提案する。
主な貢献は、ガウス過程の辞書が与えられた変分アンサンブルの構築である。
私たちのフレームワークは回帰、分類、異種タスクを可能にします。
論文 参考訳(メタデータ) (2020-10-06T09:01:55Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
物理系をシミュレーションするためのディープラーニングベースの手法を使用する際の大きな課題の1つは、物理ベースのデータの定式化である。
線形複雑度のみを用いて、あらゆる範囲の相互作用をキャプチャする、新しいマルチレベルグラフニューラルネットワークフレームワークを提案する。
実験により, 離散化不変解演算子をPDEに学習し, 線形時間で評価できることを確認した。
論文 参考訳(メタデータ) (2020-06-16T21:56:22Z) - Generalizing Convolutional Neural Networks for Equivariance to Lie
Groups on Arbitrary Continuous Data [52.78581260260455]
任意の特定のリー群からの変換に同値な畳み込み層を構築するための一般的な方法を提案する。
同じモデルアーキテクチャを画像、ボール・アンド・スティック分子データ、ハミルトン力学系に適用する。
論文 参考訳(メタデータ) (2020-02-25T17:40:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。