論文の概要: Quantum algorithm for robust optimization via stochastic-gradient online
learning
- arxiv url: http://arxiv.org/abs/2304.02262v1
- Date: Wed, 5 Apr 2023 07:25:07 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-06 13:21:02.379195
- Title: Quantum algorithm for robust optimization via stochastic-gradient online
learning
- Title(参考訳): 確率勾配オンライン学習によるロバスト最適化のための量子アルゴリズム
- Authors: Debbie Lim, Jo\~ao F. Doriguello, Patrick Rebentrost
- Abstract要約: 我々は、Ben-Talらによるオンラインロバスト最適化メタアルゴリズムを考察し、幅広い下位段階において、このアルゴリズムが元の非確率バージョンと同じ保証を持つことを示す。
我々は,このアルゴリズムの量子バージョンを開発し,少なくとも次元の2次改善が達成可能であることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Optimization theory has been widely studied in academia and finds a large
variety of applications in industry. The different optimization models in their
discrete and/or continuous settings has catered to a rich source of research
problems. Robust convex optimization is a branch of optimization theory in
which the variables or parameters involved have a certain level of uncertainty.
In this work, we consider the online robust optimization meta-algorithm by
Ben-Tal et al. and show that for a large range of stochastic subgradients, this
algorithm has the same guarantee as the original non-stochastic version. We
develop a quantum version of this algorithm and show that an at most quadratic
improvement in terms of the dimension can be achieved. The speedup is due to
the use of quantum state preparation, quantum norm estimation, and quantum
multi-sampling. We apply our quantum meta-algorithm to examples such as robust
linear programs and robust semidefinite programs and give applications of these
robust optimization problems in finance and engineering.
- Abstract(参考訳): 最適化理論は学界で広く研究されており、産業における様々な応用を見出している。
離散的および/または連続的な設定における異なる最適化モデルは、豊富な研究問題の源泉となっている。
ロバスト凸最適化(Robust convex optimization)は、変数やパラメータがある種の不確実性を持つ最適化理論の分野である。
本研究では,ben-talらによるオンラインロバスト最適化メタアルゴリズムを考察し,多くの確率的下位勾配に対して,このアルゴリズムが元の非確率的バージョンと同じ保証を持つことを示す。
我々は,このアルゴリズムの量子バージョンを開発し,少なくとも次元の2次改善が達成可能であることを示す。
高速化は、量子状態準備、量子ノルム推定、量子マルチサンプリングの使用によるものである。
量子メタアルゴリズムをロバスト線形プログラムやロバスト半定値プログラムなどの例に適用し、これらのロバスト最適化問題を金融や工学に応用する。
関連論文リスト
- Benchmarking Optimizers for Qumode State Preparation with Variational Quantum Algorithms [10.941053143198092]
この分野の進歩と潜在的な応用により、クォーモックへの関心が高まっている。
本稿では,変分量子アルゴリズムを用いて状態準備に使用する各種パラメータのパフォーマンスベンチマークを提供することにより,このギャップを埋めることを目的とする。
論文 参考訳(メタデータ) (2024-05-07T17:15:58Z) - Performant near-term quantum combinatorial optimization [1.1999555634662633]
線形深度回路を用いた最適化問題に対する変分量子アルゴリズムを提案する。
我々のアルゴリズムは、ターゲット量子関数の各項を制御するために設計されたハミルトン生成器からなるアンサッツを使用する。
性能と資源最小化のアプローチは、潜在的な量子計算上の利点の候補として有望である、と結論付けます。
論文 参考訳(メタデータ) (2024-04-24T18:49:07Z) - Randomized Benchmarking of Local Zeroth-Order Optimizers for Variational
Quantum Systems [65.268245109828]
古典学のパフォーマンスを、半ランダム化された一連のタスクで比較する。
量子システムにおける一般に好適な性能とクエリ効率のため、局所ゼロ階数に着目する。
論文 参考訳(メタデータ) (2023-10-14T02:13:26Z) - An Empirical Evaluation of Zeroth-Order Optimization Methods on
AI-driven Molecule Optimization [78.36413169647408]
分子目的を最適化するための様々なZO最適化手法の有効性について検討する。
ZO符号に基づく勾配降下(ZO-signGD)の利点を示す。
本稿では,Guurcamol スイートから広く使用されているベンチマークタスクに対して,ZO 最適化手法の有効性を示す。
論文 参考訳(メタデータ) (2022-10-27T01:58:10Z) - Prog-QAOA: Framework for resource-efficient quantum optimization through classical programs [0.0]
現在の量子最適化アルゴリズムでは、元の問題を二進最適化問題として表現し、量子デバイスに適した等価イジングモデルに変換する必要がある。
目的関数を計算し、制約を認証するための古典的プログラムを設計し、後に量子回路にコンパイルする。
その結果,量子近似最適化アルゴリズム (QAOA) が新たに導入された。
論文 参考訳(メタデータ) (2022-09-07T18:01:01Z) - Surrogate-based optimization for variational quantum algorithms [0.0]
変分量子アルゴリズム(英: Variational quantum algorithm)は、短期量子コンピュータで使用される技術の一種である。
実験的な測定をほとんど行わない変分回路のサロゲートモデルの学習について紹介する。
次に、元のデータとは対照的に、これらのモデルを用いてパラメータ最適化を行う。
論文 参考訳(メタデータ) (2022-04-12T00:15:17Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
マルチバスグラフ複雑性と非線形活性化関数の2つの革新の恩恵を受ける新しい変分量子アルゴリズムを導入する。
その結果,最適化性能が向上し,有効景観が2つ向上し,測定の進歩が減少した。
論文 参考訳(メタデータ) (2021-06-24T20:16:02Z) - Quantum variational optimization: The role of entanglement and problem
hardness [0.0]
本稿では, 絡み合いの役割, 変動量子回路の構造, 最適化問題の構造について検討する。
数値計算の結果,絡み合うゲートの分布を問題のトポロジに適応させる利点が示唆された。
リスク型コスト関数に条件値を適用することで最適化が向上し、最適解と重複する確率が増大することを示す。
論文 参考訳(メタデータ) (2021-03-26T14:06:54Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisyハイブリッド量子古典アルゴリズムは、ノイズ中間量子デバイスの使用を最大化する強力なツールである。
我々は、変分量子アルゴリズムで使用されるそのようなアンサーゼを「効率的な回路訓練」(PECT)と呼ぶ戦略を提案する。
すべてのアンサッツパラメータを一度に最適化する代わりに、PECTは一連の変分アルゴリズムを起動する。
論文 参考訳(メタデータ) (2020-10-01T18:14:11Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
QAOA(Quantum Approximate Optimization Algorithm)のようなハイブリッド量子古典アルゴリズムは、短期量子コンピュータを実用的に活用するための最も奨励的なアプローチの1つである。
このようなアルゴリズムは通常変分形式で実装され、古典的な最適化法と量子機械を組み合わせて最適化問題の優れた解を求める。
本研究では,クロスエントロピー法を用いてランドスケープを形作り,古典的パラメータがより容易により良いパラメータを発見でき,その結果,性能が向上することを示す。
論文 参考訳(メタデータ) (2020-03-11T13:52:41Z) - Adaptivity of Stochastic Gradient Methods for Nonconvex Optimization [71.03797261151605]
適応性は現代最適化理論において重要であるが、研究されていない性質である。
提案アルゴリズムは,PL目標に対して既存のアルゴリズムよりも優れた性能を保ちながら,PL目標に対して最適な収束性を実現することを実証した。
論文 参考訳(メタデータ) (2020-02-13T05:42:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。