論文の概要: Challenges and Opportunities in Quantum Optimization
- arxiv url: http://arxiv.org/abs/2312.02279v3
- Date: Sun, 17 Nov 2024 13:01:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-19 14:27:13.415200
- Title: Challenges and Opportunities in Quantum Optimization
- Title(参考訳): 量子最適化の課題と機会
- Authors: Amira Abbas, Andris Ambainis, Brandon Augustino, Andreas Bärtschi, Harry Buhrman, Carleton Coffrin, Giorgio Cortiana, Vedran Dunjko, Daniel J. Egger, Bruce G. Elmegreen, Nicola Franco, Filippo Fratini, Bryce Fuller, Julien Gacon, Constantin Gonciulea, Sander Gribling, Swati Gupta, Stuart Hadfield, Raoul Heese, Gerhard Kircher, Thomas Kleinert, Thorsten Koch, Georgios Korpas, Steve Lenk, Jakub Marecek, Vanio Markov, Guglielmo Mazzola, Stefano Mensa, Naeimeh Mohseni, Giacomo Nannicini, Corey O'Meara, Elena Peña Tapia, Sebastian Pokutta, Manuel Proissl, Patrick Rebentrost, Emre Sahin, Benjamin C. B. Symons, Sabine Tornow, Victor Valls, Stefan Woerner, Mira L. Wolf-Bauwens, Jon Yard, Sheir Yarkoni, Dirk Zechiel, Sergiy Zhuk, Christa Zoufal,
- Abstract要約: 量子コンピュータの最近の進歩は、ブラトフォース古典シミュレーションを超えるスケールで問題を解決する能力を示している。
計算機科学や物理学全般において、主要な最適化問題に対するアプローチは様々である。
- 参考スコア(独自算出の注目度): 14.7608536260003
- License:
- Abstract: Recent advances in quantum computers are demonstrating the ability to solve problems at a scale beyond brute force classical simulation. As such, a widespread interest in quantum algorithms has developed in many areas, with optimization being one of the most pronounced domains. Across computer science and physics, there are a number of different approaches for major classes of optimization problems, such as combinatorial optimization, convex optimization, non-convex optimization, and stochastic extensions. This work draws on multiple approaches to study quantum optimization. Provably exact versus heuristic settings are first explained using computational complexity theory - highlighting where quantum advantage is possible in each context. Then, the core building blocks for quantum optimization algorithms are outlined to subsequently define prominent problem classes and identify key open questions that, if answered, will advance the field. The effects of scaling relevant problems on noisy quantum devices are also outlined in detail, alongside meaningful benchmarking problems. We underscore the importance of benchmarking by proposing clear metrics to conduct appropriate comparisons with classical optimization techniques. Lastly, we highlight two domains - finance and sustainability - as rich sources of optimization problems that could be used to benchmark, and eventually validate, the potential real-world impact of quantum optimization.
- Abstract(参考訳): 量子コンピュータの最近の進歩は、ブラトフォース古典シミュレーションを超えるスケールで問題を解決する能力を示している。
このように、量子アルゴリズムに対する幅広い関心が多くの分野で発展し、最適化は最も顕著な領域の1つである。
計算機科学や物理学全般において、組合せ最適化、凸最適化、非凸最適化、確率的拡張など、主要な最適化問題に対する様々なアプローチが存在する。
この研究は、量子最適化を研究するための複数のアプローチに基づいている。
確率的対ヒューリスティックな設定は、まず計算複雑性理論を用いて説明される。
次に、量子最適化アルゴリズムのコアビルディングブロックを概説し、次に顕著な問題クラスを定義し、もし答えれば、フィールドを前進させる重要なオープンな質問を特定する。
関連する問題をスケールすることによるノイズの多い量子デバイスへの影響も、有意義なベンチマーク問題とともに詳細に概説されている。
我々は、古典的な最適化手法と適切な比較を行うために、明確なメトリクスを提案することで、ベンチマークの重要性を強調する。
最後に、ファイナンスとサステナビリティという2つの領域を、量子最適化の潜在的な現実的影響をベンチマークに使用し、最終的に検証することのできる、豊富な最適化問題のソースとして強調する。
関連論文リスト
- Quantum Circuit Optimization: Current trends and future direction [0.0]
量子回路最適化の最近の進歩を探求する。
解析アルゴリズム、量子アルゴリズム、機械学習に基づくアルゴリズム、ハイブリッド量子古典アルゴリズムについて論じる。
論文 参考訳(メタデータ) (2024-08-16T15:07:51Z) - Guess What Quantum Computing Can Do for Test Case Optimization [43.89456212504871]
近い将来、量子近似最適化アルゴリズム(QAOAs)は最適化問題を解く大きな可能性を秘めている。
本稿では,QAOA問題としてソフトウェアテストケース最適化問題を定式化し,量子コンピュータシミュレータ上での解法を提案する。
近年は利用できない多くのキュービットを必要とするより大きなテスト最適化問題を解決するため、QAOAと問題分解戦略を統合する。
論文 参考訳(メタデータ) (2023-12-24T21:25:31Z) - Randomized Benchmarking of Local Zeroth-Order Optimizers for Variational
Quantum Systems [65.268245109828]
古典学のパフォーマンスを、半ランダム化された一連のタスクで比較する。
量子システムにおける一般に好適な性能とクエリ効率のため、局所ゼロ階数に着目する。
論文 参考訳(メタデータ) (2023-10-14T02:13:26Z) - Quantum algorithms: A survey of applications and end-to-end complexities [90.05272647148196]
期待されている量子コンピュータの応用は、科学と産業にまたがる。
本稿では,量子アルゴリズムの応用分野について検討する。
私たちは、各領域における課題と機会を"エンドツーエンド"な方法で概説します。
論文 参考訳(メタデータ) (2023-10-04T17:53:55Z) - A Review on Quantum Approximate Optimization Algorithm and its Variants [47.89542334125886]
量子近似最適化アルゴリズム(Quantum Approximate Optimization Algorithm、QAOA)は、難解な最適化問題を解くことを目的とした、非常に有望な変分量子アルゴリズムである。
この総合的なレビューは、様々なシナリオにおけるパフォーマンス分析を含む、QAOAの現状の概要を提供する。
我々は,提案アルゴリズムの今後の展望と方向性を探りながら,選択したQAOA拡張と変種の比較研究を行う。
論文 参考訳(メタデータ) (2023-06-15T15:28:12Z) - NP-hard but no longer hard to solve? Using quantum computing to tackle
optimization problems [1.1470070927586016]
量子コンピュータを用いて最適化問題を解く量子最適化の分野について論じる。
適切なユースケースを通じてこれを実証し、量子コンピュータの現在の品質について論じる。
本稿では、最近の量子最適化のブレークスルーと現状と今後の方向性について論じる。
論文 参考訳(メタデータ) (2022-12-21T12:56:37Z) - An in-principle super-polynomial quantum advantage for approximating
combinatorial optimization problems via computational learning theory [5.907281242647458]
量子コンピュータは、最適化問題に対する近似解法において、古典的コンピュータよりも高次超多項式的優位性を有することを証明している。
量子アドバンテージのコアは、究極的にはShorの量子アルゴリズムからファクタリングのために借用されている。
論文 参考訳(メタデータ) (2022-12-16T19:01:04Z) - Quantum topology optimization of ground structures using noisy
intermediate-scale quantum devices [8.325359814939517]
トポロジ最適化問題に対する潜在的な解決策として,量子コンピュータの利用について検討する。
実機実験を含むいくつかの実験により,提案手法が最適構成を得ることができた。
論文 参考訳(メタデータ) (2022-07-19T10:39:28Z) - Efficient Use of Quantum Linear System Algorithms in Interior Point
Methods for Linear Optimization [0.0]
線形最適化問題を解くために、非現実的な量子内点法を開発した。
また、量子ソルバの過度な時間なしで、反復リファインメントによって正確な解を得る方法についても論じる。
論文 参考訳(メタデータ) (2022-05-02T21:30:56Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
マルチバスグラフ複雑性と非線形活性化関数の2つの革新の恩恵を受ける新しい変分量子アルゴリズムを導入する。
その結果,最適化性能が向上し,有効景観が2つ向上し,測定の進歩が減少した。
論文 参考訳(メタデータ) (2021-06-24T20:16:02Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
本研究では,トラベリングセールスマン問題に必要なキュービット数を大幅に削減できることを示す。
また、量子ビット効率と回路深さ効率のモデルを円滑に補間する符号化方式を提案する。
論文 参考訳(メタデータ) (2020-09-15T18:17:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。