論文の概要: Approach Intelligent Writing Assistants Usability with Seven Stages of
Action
- arxiv url: http://arxiv.org/abs/2304.02822v1
- Date: Thu, 6 Apr 2023 02:11:55 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-16 22:33:48.101492
- Title: Approach Intelligent Writing Assistants Usability with Seven Stages of
Action
- Title(参考訳): 知能筆記法 : 7段階の動作によるユーザビリティ向上
- Authors: Avinash Bhat, Disha Shrivastava, Jin L.C. Guo
- Abstract要約: 我々は,知的書記アシスタントのインタラクション設計にアプローチするための枠組みとして,ノーマンの7つの行動段階を採用する。
ソフトウェアチュートリアルのオーサリングの例として,タスク記述へのフレームワークの適用性について説明する。
- 参考スコア(独自算出の注目度): 9.378355457555319
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite the potential of Large Language Models (LLMs) as writing assistants,
they are plagued by issues like coherence and fluency of the model output,
trustworthiness, ownership of the generated content, and predictability of
model performance, thereby limiting their usability. In this position paper, we
propose to adopt Norman's seven stages of action as a framework to approach the
interaction design of intelligent writing assistants. We illustrate the
framework's applicability to writing tasks by providing an example of software
tutorial authoring. The paper also discusses the framework as a tool to
synthesize research on the interaction design of LLM-based tools and presents
examples of tools that support the stages of action. Finally, we briefly
outline the potential of a framework for human-LLM interaction research.
- Abstract(参考訳): 大規模言語モデル(llm)が記述アシスタントとしての可能性を秘めているが、それらはモデル出力の一貫性や流動性、信頼性、生成されたコンテンツの所有権、モデルパフォーマンスの予測可能性といった問題に悩まされ、ユーザビリティを制限している。
本稿では,知的書記アシスタントのインタラクション設計にアプローチするための枠組みとして,ノーマンの7つの行動段階を採用することを提案する。
ソフトウェアチュートリアルのオーサリングの例を提供し,タスク記述に対するフレームワークの適用性を説明する。
また, LLM ベースのツールのインタラクション設計の研究を合成するためのツールとして, このフレームワークについて論じ, アクションの段階をサポートするツールの例を示す。
最後に,人間-LLMインタラクション研究のためのフレームワークの可能性について概説する。
関連論文リスト
- WorkArena++: Towards Compositional Planning and Reasoning-based Common Knowledge Work Tasks [85.95607119635102]
大型言語モデル(LLM)は人間のような知性を模倣することができる。
WorkArena++は、Webエージェントの計画、問題解決、論理的/論理的推論、検索、コンテキスト的理解能力を評価するように設計されている。
論文 参考訳(メタデータ) (2024-07-07T07:15:49Z) - LangSuitE: Planning, Controlling and Interacting with Large Language Models in Embodied Text Environments [70.91258869156353]
テキストエンボディの世界における6つの代表的具体的タスクを特徴とする多目的・シミュレーション不要なテストベッドであるLangSuitEを紹介する。
以前のLLMベースのテストベッドと比較すると、LangSuitEは複数のシミュレーションエンジンを使わずに、多様な環境への適応性を提供する。
具体化された状態の履歴情報を要約した新しいチェーン・オブ・ソート(CoT)スキーマであるEmMemを考案する。
論文 参考訳(メタデータ) (2024-06-24T03:36:29Z) - Towards a copilot in BIM authoring tool using a large language model-based agent for intelligent human-machine interaction [0.40964539027092917]
デザイナーは、しばしばよりインテリジェントで軽量な方法でソフトウェアと対話しようとします。
本稿では,BIMオーサリングツールにおいて,協調動作として機能する自律エージェントフレームワークを提案する。
BIMオーサリングソフトウェアであるVectorworksのケーススタディでは,提案したフレームワークをシームレスに統合するソフトウェアプロトタイプを実装した。
論文 参考訳(メタデータ) (2024-06-02T17:47:57Z) - CELA: Cost-Efficient Language Model Alignment for CTR Prediction [71.85120354973073]
CTR(Click-Through Rate)予測は、レコメンダシステムにおいて最重要位置を占める。
最近の取り組みは、プレトレーニング言語モデル(PLM)を統合することでこれらの課題を緩和しようとしている。
CTR予測のためのtextbfCost-textbfEfficient textbfLanguage Model textbfAlignment (textbfCELA)を提案する。
論文 参考訳(メタデータ) (2024-05-17T07:43:25Z) - Fine-Tuning Large Vision-Language Models as Decision-Making Agents via Reinforcement Learning [79.38140606606126]
強化学習(RL)を用いた視覚言語モデル(VLM)を微調整するアルゴリズムフレームワークを提案する。
我々のフレームワークはタスク記述を提供し、次にVLMにチェーン・オブ・シント(CoT)推論を生成するよう促す。
提案手法は,VLMエージェントの様々なタスクにおける意思決定能力を向上させる。
論文 参考訳(メタデータ) (2024-05-16T17:50:19Z) - Evaluating Large Language Model Creativity from a Literary Perspective [13.672268920902187]
本稿では,大規模言語モデルが創造的記述プロセスにおいて補助ツールとして機能する可能性を評価する。
我々は,背景記述をインターリーブする対話的かつ多声的なプロンプト戦略,構成を案内する指示,対象スタイルのテキストのサンプル,与えられたサンプルの批判的議論を開発する。
論文 参考訳(メタデータ) (2023-11-30T16:46:25Z) - Creativity Support in the Age of Large Language Models: An Empirical
Study Involving Emerging Writers [33.3564201174124]
経験的ユーザスタディを通じて,プロのライターを支援するため,現代の大規模言語モデルの有用性について検討する。
筆者らは3種類の認知活動の全てにLLMの助けを求める一方で、LLMは翻訳やレビューに役立ちます。
論文 参考訳(メタデータ) (2023-09-22T01:49:36Z) - TPTU: Large Language Model-based AI Agents for Task Planning and Tool
Usage [28.554981886052953]
大規模言語モデル(LLM)は、様々な現実世界のアプリケーションのための強力なツールとして登場した。
LLMの本質的な生成能力は、その長所にもかかわらず、複雑なタスクを扱うには不十分である。
本稿では,LLMベースのAIエージェントに適した構造化フレームワークを提案する。
論文 参考訳(メタデータ) (2023-08-07T09:22:03Z) - VISAR: A Human-AI Argumentative Writing Assistant with Visual
Programming and Rapid Draft Prototyping [13.023911633052482]
VISARは、著者のブレインストーミングと、執筆コンテキストにおける階層的な目標の修正を支援するために設計されたAI対応の筆記アシスタントシステムである。
テキストの同期編集とビジュアルプログラミングによって引数構造を整理し、議論の発散による説得力を高める。
制御された研究室研究により、議論的な執筆計画プロセスの促進におけるVISARの有用性と有効性が確認された。
論文 参考訳(メタデータ) (2023-04-16T15:29:03Z) - CAMEL: Communicative Agents for "Mind" Exploration of Large Language
Model Society [58.04479313658851]
本稿では,コミュニケーションエージェント間の自律的協調を支援するスケーラブルな手法の構築の可能性について検討する。
本稿では,ロールプレイングという新しいコミュニケーションエージェントフレームワークを提案する。
コントリビューションには、新しいコミュニケーティブエージェントフレームワークの導入、マルチエージェントシステムの協調行動や能力を研究するためのスケーラブルなアプローチの提供などが含まれます。
論文 参考訳(メタデータ) (2023-03-31T01:09:00Z) - CoAuthor: Designing a Human-AI Collaborative Writing Dataset for
Exploring Language Model Capabilities [92.79451009324268]
我々は,GPT-3の創造的かつ議論的な記述を支援する能力を明らかにするために設計されたデータセットであるCoAuthorを提案する。
我々は、CoAuthorがGPT-3の言語、アイデア、コラボレーション機能に関する問題に対処できることを実証した。
インタラクション設計に関して,この作業がLMの約束や落とし穴に関して,より原則化された議論を促進する可能性について論じる。
論文 参考訳(メタデータ) (2022-01-18T07:51:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。