論文の概要: GANHead: Towards Generative Animatable Neural Head Avatars
- arxiv url: http://arxiv.org/abs/2304.03950v1
- Date: Sat, 8 Apr 2023 07:56:21 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-11 18:43:05.387259
- Title: GANHead: Towards Generative Animatable Neural Head Avatars
- Title(参考訳): GANHead: 生成可能なアニマタブルなニューラルヘッドアバターを目指して
- Authors: Sijing Wu, Yichao Yan, Yunhao Li, Yuhao Cheng, Wenhan Zhu, Ke Gao,
Xiaobo Li, Guangtao Zhai
- Abstract要約: GANHeadは、明示的な表現パラメータのきめ細かい制御の利点を生かした、新しい生成ヘッドモデルである。
粗い幾何学、細かな詳細、標準空間の3つのネットワークによるテクスチャを表現している。
ヘッドアバター生成および生スキャンフィッティングにおいて優れた性能を発揮する。
- 参考スコア(独自算出の注目度): 31.35233032284164
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: To bring digital avatars into people's lives, it is highly demanded to
efficiently generate complete, realistic, and animatable head avatars. This
task is challenging, and it is difficult for existing methods to satisfy all
the requirements at once. To achieve these goals, we propose GANHead
(Generative Animatable Neural Head Avatar), a novel generative head model that
takes advantages of both the fine-grained control over the explicit expression
parameters and the realistic rendering results of implicit representations.
Specifically, GANHead represents coarse geometry, fine-gained details and
texture via three networks in canonical space to obtain the ability to generate
complete and realistic head avatars. To achieve flexible animation, we define
the deformation filed by standard linear blend skinning (LBS), with the learned
continuous pose and expression bases and LBS weights. This allows the avatars
to be directly animated by FLAME parameters and generalize well to unseen poses
and expressions. Compared to state-of-the-art (SOTA) methods, GANHead achieves
superior performance on head avatar generation and raw scan fitting.
- Abstract(参考訳): デジタルアバターを人々の生活に持ち込むためには、完全でリアルでアニメーション可能な頭部アバターを効率的に生成することが求められている。
このタスクは困難であり、既存のメソッドが一度にすべての要件を満たすのは難しい。
これらの目的を達成するために,明示的な表現パラメータのきめ細かい制御と,暗黙的な表現の現実的なレンダリング結果の両方を利用した,新しい生成型頭部モデルganhead(generative animatable neural head avatar)を提案する。
特に、GANHeadは、粗い幾何学、細粒度、テクスチャを標準空間の3つのネットワークを介して表現し、完全なリアルな頭部アバターを生成する能力を得る。
フレキシブルアニメーションを実現するため,標準的な線形ブレンドスキン(LBS)による変形を,学習された連続ポーズ,表現ベース,LBS重みで定義する。
これにより、アバターをFLAMEパラメータで直接アニメーションし、見えないポーズや表現をうまく一般化することができる。
最先端技術 (SOTA) 法と比較して, GANHead は頭部アバター生成および生スキャンフィッティングにおいて優れた性能を発揮する。
関連論文リスト
- Generalizable and Animatable Gaussian Head Avatar [50.34788590904843]
本稿では,GAGAvatar(Generalizable and Animatable Gaussian Head Avatar)を提案する。
我々は、1つの前方通過で1つの画像から3次元ガウスのパラメータを生成する。
提案手法は, 従来の手法と比較して, 再現性や表現精度の点で優れた性能を示す。
論文 参考訳(メタデータ) (2024-10-10T14:29:00Z) - GaussianHeads: End-to-End Learning of Drivable Gaussian Head Avatars from Coarse-to-fine Representations [54.94362657501809]
マルチビュー画像から高ダイナミックで変形可能な人間の頭部アバターをリアルタイムで生成する手法を提案する。
本手法のコアとなるのは,顔表情と頭部運動の複雑なダイナミクスを捉えることができる頭部モデルの階層的表現である。
我々は、この粗い顔アバターモデルを、エンドツーエンドのフレームワークで学習可能なパラメータとして頭部ポーズとともに訓練する。
論文 参考訳(メタデータ) (2024-09-18T13:05:43Z) - GPHM: Gaussian Parametric Head Model for Monocular Head Avatar Reconstruction [47.113910048252805]
高忠実度3D人間の頭部アバターは、VR/AR、デジタル人間、映画製作に不可欠である。
近年の進歩は、変形可能な顔モデルを利用して、様々なアイデンティティと表現を表現するアニメーションヘッドアバターを生成している。
本稿では,人間の頭部の複雑さを正確に表現するために,三次元ガウスを用いた3次元ガウスパラメトリックヘッドモデルを提案する。
論文 参考訳(メタデータ) (2024-07-21T06:03:11Z) - PSAvatar: A Point-based Shape Model for Real-Time Head Avatar Animation with 3D Gaussian Splatting [17.78639236586134]
PSAvatarは、アニマタブルヘッドアバター作成のための新しいフレームワークである。
詳細な表現と高忠実度レンダリングに3D Gaussian を使用している。
PSAvatarは多種多様な被験者の高忠実度頭部アバターを再構築でき、リアルタイムでアバターをアニメーションできることを示す。
論文 参考訳(メタデータ) (2024-01-23T16:40:47Z) - HHAvatar: Gaussian Head Avatar with Dynamic Hairs [27.20228210350169]
動的ヘアモデリングを用いた高忠実度頭部アバターの3次元ガウスアン制御が可能なアバターを提案する。
提案手法は,2K解像度で超高忠実なレンダリング品質を実現するため,最先端のスパースビュー法よりも優れている。
論文 参考訳(メタデータ) (2023-12-05T11:01:44Z) - Text-Guided Generation and Editing of Compositional 3D Avatars [59.584042376006316]
私たちのゴールは、テキスト記述だけで髪とアクセサリーを備えたリアルな3D顔アバターを作ることです。
既存の方法はリアリズムを欠いているか、非現実的な形状を作り出すか、編集をサポートしていないかのいずれかである。
論文 参考訳(メタデータ) (2023-09-13T17:59:56Z) - Generalizable One-shot Neural Head Avatar [90.50492165284724]
本研究では,1枚の画像から3次元頭部アバターを再構成し,アニメイトする手法を提案する。
本研究では,一視点画像に基づく識別不能な人物を一般化するだけでなく,顔領域内外における特徴的詳細を捉えるフレームワークを提案する。
論文 参考訳(メタデータ) (2023-06-14T22:33:09Z) - I M Avatar: Implicit Morphable Head Avatars from Videos [68.13409777995392]
モノクロビデオから暗黙の頭部アバターを学習するための新しい手法であるIMavatarを提案する。
従来の3DMMによるきめ細かい制御機構に着想を得て, 学習用ブレンドサップとスキンフィールドによる表現・ポーズ関連変形を表現した。
本手法は,最先端の手法と比較して,幾何性を改善し,より完全な表現空間をカバーできることを定量的かつ定性的に示す。
論文 参考訳(メタデータ) (2021-12-14T15:30:32Z) - Neural Head Avatars from Monocular RGB Videos [0.0]
アニマタブルヒトアバターの表面形状と外観を明示的にモデル化した新しいニューラル表現を提案する。
我々の表現は、様々な表現とビューを特徴とする単眼のRGBポートレートビデオから学べる。
論文 参考訳(メタデータ) (2021-12-02T19:01:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。