CILIATE: Towards Fairer Class-based Incremental Learning by Dataset and
Training Refinement
- URL: http://arxiv.org/abs/2304.04222v1
- Date: Sun, 9 Apr 2023 12:10:39 GMT
- Title: CILIATE: Towards Fairer Class-based Incremental Learning by Dataset and
Training Refinement
- Authors: Xuanqi Gao, Juan Zhai, Shiqing Ma, Chao Shen, Yufei Chen, Shiwei Wang
- Abstract summary: We show that CIL suffers both dataset and algorithm bias problems.
We propose a novel framework, CILIATE, that fixes both dataset and algorithm bias in CIL.
CILIATE improves the fairness of CIL by 17.03%, 22.46%, and 31.79% compared to state-of-the-art methods.
- Score: 20.591583747291892
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Due to the model aging problem, Deep Neural Networks (DNNs) need updates to
adjust them to new data distributions. The common practice leverages
incremental learning (IL), e.g., Class-based Incremental Learning (CIL) that
updates output labels, to update the model with new data and a limited number
of old data. This avoids heavyweight training (from scratch) using conventional
methods and saves storage space by reducing the number of old data to store.
But it also leads to poor performance in fairness. In this paper, we show that
CIL suffers both dataset and algorithm bias problems, and existing solutions
can only partially solve the problem. We propose a novel framework, CILIATE,
that fixes both dataset and algorithm bias in CIL. It features a novel
differential analysis guided dataset and training refinement process that
identifies unique and important samples overlooked by existing CIL and enforces
the model to learn from them. Through this process, CILIATE improves the
fairness of CIL by 17.03%, 22.46%, and 31.79% compared to state-of-the-art
methods, iCaRL, BiC, and WA, respectively, based on our evaluation on three
popular datasets and widely used ResNet models.
Related papers
- Accelerating Large Language Model Pretraining via LFR Pedagogy: Learn, Focus, and Review [50.78587571704713]
Learn-Focus-Review (LFR) is a dynamic training approach that adapts to the model's learning progress.
LFR tracks the model's learning performance across data blocks (sequences of tokens) and prioritizes revisiting challenging regions of the dataset.
Compared to baseline models trained on the full datasets, LFR consistently achieved lower perplexity and higher accuracy.
arXiv Detail & Related papers (2024-09-10T00:59:18Z) - Class-Imbalanced Semi-Supervised Learning for Large-Scale Point Cloud
Semantic Segmentation via Decoupling Optimization [64.36097398869774]
Semi-supervised learning (SSL) has been an active research topic for large-scale 3D scene understanding.
The existing SSL-based methods suffer from severe training bias due to class imbalance and long-tail distributions of the point cloud data.
We introduce a new decoupling optimization framework, which disentangles feature representation learning and classifier in an alternative optimization manner to shift the bias decision boundary effectively.
arXiv Detail & Related papers (2024-01-13T04:16:40Z) - Enhancing Consistency and Mitigating Bias: A Data Replay Approach for
Incremental Learning [100.7407460674153]
Deep learning systems are prone to catastrophic forgetting when learning from a sequence of tasks.
To mitigate the problem, a line of methods propose to replay the data of experienced tasks when learning new tasks.
However, it is not expected in practice considering the memory constraint or data privacy issue.
As a replacement, data-free data replay methods are proposed by inverting samples from the classification model.
arXiv Detail & Related papers (2024-01-12T12:51:12Z) - Learn to Unlearn for Deep Neural Networks: Minimizing Unlearning
Interference with Gradient Projection [56.292071534857946]
Recent data-privacy laws have sparked interest in machine unlearning.
Challenge is to discard information about the forget'' data without altering knowledge about remaining dataset.
We adopt a projected-gradient based learning method, named as Projected-Gradient Unlearning (PGU)
We provide empirically evidence to demonstrate that our unlearning method can produce models that behave similar to models retrained from scratch across various metrics even when the training dataset is no longer accessible.
arXiv Detail & Related papers (2023-12-07T07:17:24Z) - Improved Distribution Matching for Dataset Condensation [91.55972945798531]
We propose a novel dataset condensation method based on distribution matching.
Our simple yet effective method outperforms most previous optimization-oriented methods with much fewer computational resources.
arXiv Detail & Related papers (2023-07-19T04:07:33Z) - CLIP: Train Faster with Less Data [3.2575001434344286]
Deep learning models require an enormous amount of data for training.
Recently there is a shift in machine learning from model-centric to data-centric approaches.
We propose CLIP i.e., Curriculum Learning with Iterative data Pruning.
arXiv Detail & Related papers (2022-12-02T21:29:48Z) - Hyperparameter-free Continuous Learning for Domain Classification in
Natural Language Understanding [60.226644697970116]
Domain classification is the fundamental task in natural language understanding (NLU)
Most existing continual learning approaches suffer from low accuracy and performance fluctuation.
We propose a hyper parameter-free continual learning model for text data that can stably produce high performance under various environments.
arXiv Detail & Related papers (2022-01-05T02:46:16Z) - Does Data Repair Lead to Fair Models? Curating Contextually Fair Data To
Reduce Model Bias [10.639605996067534]
Contextual information is a valuable cue for Deep Neural Networks (DNNs) to learn better representations and improve accuracy.
In COCO, many object categories have a much higher co-occurrence with men compared to women, which can bias a DNN's prediction in favor of men.
We introduce a data repair algorithm using the coefficient of variation, which can curate fair and contextually balanced data for a protected class.
arXiv Detail & Related papers (2021-10-20T06:00:03Z) - Few-Shot Incremental Learning with Continually Evolved Classifiers [46.278573301326276]
Few-shot class-incremental learning (FSCIL) aims to design machine learning algorithms that can continually learn new concepts from a few data points.
The difficulty lies in that limited data from new classes not only lead to significant overfitting issues but also exacerbate the notorious catastrophic forgetting problems.
We propose a Continually Evolved CIF ( CEC) that employs a graph model to propagate context information between classifiers for adaptation.
arXiv Detail & Related papers (2021-04-07T10:54:51Z) - ClaRe: Practical Class Incremental Learning By Remembering Previous
Class Representations [9.530976792843495]
Class Incremental Learning (CIL) tends to learn new concepts perfectly, but not at the expense of performance and accuracy for old data.
ClaRe is an efficient solution for CIL by remembering the representations of learned classes in each increment.
ClaRe has a better generalization than prior methods thanks to producing diverse instances from the distribution of previously learned classes.
arXiv Detail & Related papers (2021-03-29T10:39:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.