論文の概要: A Review on Explainable Artificial Intelligence for Healthcare: Why,
How, and When?
- arxiv url: http://arxiv.org/abs/2304.04780v1
- Date: Mon, 10 Apr 2023 17:40:21 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-12 17:25:25.614560
- Title: A Review on Explainable Artificial Intelligence for Healthcare: Why,
How, and When?
- Title(参考訳): 医療のための説明可能な人工知能のレビュー:なぜ、どのように、いつ?
- Authors: Subrato Bharati, M. Rubaiyat Hossain Mondal, Prajoy Podder
- Abstract要約: 我々は、説明可能な人工知能(XAI)の体系的分析を行う。
このレビューでは、XAIの主流傾向を分析し、研究の方向性について概説する。
本稿では、医療分野におけるAIモデルの記述から信頼できるAIをどのように導き出すことができるかを説明する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Artificial intelligence (AI) models are increasingly finding applications in
the field of medicine. Concerns have been raised about the explainability of
the decisions that are made by these AI models. In this article, we give a
systematic analysis of explainable artificial intelligence (XAI), with a
primary focus on models that are currently being used in the field of
healthcare. The literature search is conducted following the preferred
reporting items for systematic reviews and meta-analyses (PRISMA) standards for
relevant work published from 1 January 2012 to 02 February 2022. The review
analyzes the prevailing trends in XAI and lays out the major directions in
which research is headed. We investigate the why, how, and when of the uses of
these XAI models and their implications. We present a comprehensive examination
of XAI methodologies as well as an explanation of how a trustworthy AI can be
derived from describing AI models for healthcare fields. The discussion of this
work will contribute to the formalization of the XAI field.
- Abstract(参考訳): 人工知能(AI)モデルは、医療分野の応用が増えている。
これらのAIモデルによってなされる決定の可否について懸念が高まっている。
本稿では,現在医療の分野で使用されているモデルを中心に,説明可能な人工知能(xai)の体系的分析を行う。
文献検索は、2012年1月1日から2022年2月02日までに発行された関連作業の体系的レビューとメタ分析(PRISMA)基準の報告項目に従って行われる。
このレビューでは、XAIの主流傾向を分析し、研究の方向性について概説する。
我々は,これらのxaiモデルの利用の理由,方法,およびその意味について検討する。
本稿では、XAI方法論の総合的な検討と、医療分野におけるAIモデルの記述から信頼できるAIをどのように引き出すことができるかを説明する。
この研究の議論は、XAI分野の形式化に寄与する。
関連論文リスト
- Explainable AI: Definition and attributes of a good explanation for health AI [0.18846515534317265]
AIシステムが推奨する方法と理由を理解するには、内部の動作と推論プロセスに関する複雑な説明が必要になる可能性がある。
AIの可能性を完全に実現するためには、安全クリティカルなAIアプリケーションの説明に関する2つの基本的な疑問に対処することが重要である。
本研究の成果は,(1)健康AIにおける説明を構成するものの定義,(2)健康AIにおける良い説明を特徴付ける属性の包括的リストを含む。
論文 参考訳(メタデータ) (2024-09-09T16:56:31Z) - A Survey of Artificial Intelligence in Gait-Based Neurodegenerative Disease Diagnosis [51.07114445705692]
神経変性疾患(神経変性疾患、ND)は、伝統的に医学的診断とモニタリングのために広範囲の医療資源と人的努力を必要とする。
重要な疾患関連運動症状として、ヒトの歩行を利用して異なるNDを特徴づけることができる。
人工知能(AI)モデルの現在の進歩は、NDの識別と分類のための自動歩行分析を可能にする。
論文 参考訳(メタデータ) (2024-05-21T06:44:40Z) - Explainable AI applications in the Medical Domain: a systematic review [1.4419517737536707]
医療AIの分野は、ユーザー信頼の構築、規制の遵守、倫理的にデータの利用など、さまざまな課題に直面している。
本稿では,近年発行されている198記事の代表的サンプルをもとに,XAIソリューションの医療意思決定支援への展開に関する文献的考察を行う。
論文 参考訳(メタデータ) (2023-08-10T08:12:17Z) - A Brief Review of Explainable Artificial Intelligence in Healthcare [7.844015105790313]
XAIは、AIアプリケーションを構築するための技術と方法を指す。
モデル説明可能性と解釈可能性は、医療実践におけるAIモデルのデプロイを成功させる上で不可欠である。
論文 参考訳(メタデータ) (2023-04-04T05:41:57Z) - The Role of AI in Drug Discovery: Challenges, Opportunities, and
Strategies [97.5153823429076]
この分野でのAIのメリット、課題、欠点についてレビューする。
データ拡張、説明可能なAIの使用、従来の実験手法とAIの統合についても論じている。
論文 参考訳(メタデータ) (2022-12-08T23:23:39Z) - What Do End-Users Really Want? Investigation of Human-Centered XAI for
Mobile Health Apps [69.53730499849023]
説明可能なAI(XAI)を評価するために,ユーザ中心のペルソナ概念を提案する。
分析の結果,ユーザの人口統計や性格,説明のタイプ,影響説明の嗜好が示された。
私たちの洞察は、対話的で人間中心のXAIを実践的な応用に近づけます。
論文 参考訳(メタデータ) (2022-10-07T12:51:27Z) - Connecting Algorithmic Research and Usage Contexts: A Perspective of
Contextualized Evaluation for Explainable AI [65.44737844681256]
説明可能なAI(XAI)を評価する方法に関するコンセンサスの欠如は、この分野の進歩を妨げる。
このギャップを埋める一つの方法は、異なるユーザ要求を考慮に入れた評価方法を開発することである、と我々は主張する。
論文 参考訳(メタデータ) (2022-06-22T05:17:33Z) - Explainable AI: current status and future directions [11.92436948211501]
説明可能な人工知能(XAI)は、人工知能(AI)分野における新たな研究分野である。
XAIは、AIが特定のソリューションをどのように取得したかを説明し、他の"wh"質問にも答えることができる。
本稿では,マルチメディア(テキスト,画像,音声,ビデオ)の観点から,これらの技術の概要を紹介する。
論文 参考訳(メタデータ) (2021-07-12T08:42:19Z) - Explainable AI meets Healthcare: A Study on Heart Disease Dataset [0.0]
目的は、様々な技術を用いて説明可能なAIシステムの理解性と解釈可能性について実践者に啓蒙することである。
本論文は、心臓病データセットに基づく例を収録し、信頼性を高めるために説明可能性技術をどのように好むべきかを解明する。
論文 参考訳(メタデータ) (2020-11-06T05:18:43Z) - Explainability in Deep Reinforcement Learning [68.8204255655161]
説明可能な強化学習(XRL)の実現に向けての最近の成果を概観する。
エージェントの振る舞いを正当化し、説明することが不可欠である重要な状況において、RLモデルのより良い説明可能性と解釈性は、まだブラックボックスと見なされているものの内部動作に関する科学的洞察を得るのに役立つ。
論文 参考訳(メタデータ) (2020-08-15T10:11:42Z) - A general framework for scientifically inspired explanations in AI [76.48625630211943]
我々は、AIシステムの説明を実装可能な一般的なフレームワークの理論的基盤として、科学的説明の構造の概念をインスタンス化する。
このフレームワークは、AIシステムの"メンタルモデル"を構築するためのツールを提供することを目的としている。
論文 参考訳(メタデータ) (2020-03-02T10:32:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。