論文の概要: Explicit and Implicit Semantic Ranking Framework
- arxiv url: http://arxiv.org/abs/2304.04918v2
- Date: Tue, 12 Nov 2024 15:42:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-13 13:17:40.705272
- Title: Explicit and Implicit Semantic Ranking Framework
- Title(参考訳): 明示的かつ暗黙的なセマンティックランキングフレームワーク
- Authors: Xiaofeng Zhu, Thomas Lin, Vishal Anand, Matthew Calderwood, Eric Clausen-Brown, Gord Lueck, Wen-wai Yim, Cheng Wu,
- Abstract要約: 自己学習型セマンティック・クロスアテンションランキング(sRank)を導入した汎用的なセマンティック・ラーニング・ツー・ランク・フレームワークを提案する。
このフレームワークは、可変トレーニングバッチサイズで線形ペアワイズロスを使用し、品質向上と高い効率を達成する。
これは、現実世界の大規模データセットよりも、Microsoftの2つの業界タスクの利益を示すために、効果的に適用されている。
- 参考スコア(独自算出の注目度): 13.356884800150457
- License:
- Abstract: The core challenge in numerous real-world applications is to match an inquiry to the best document from a mutable and finite set of candidates. Existing industry solutions, especially latency-constrained services, often rely on similarity algorithms that sacrifice quality for speed. In this paper we introduce a generic semantic learning-to-rank framework, Self-training Semantic Cross-attention Ranking (sRank). This transformer-based framework uses linear pairwise loss with mutable training batch sizes and achieves quality gains and high efficiency, and has been applied effectively to show gains on two industry tasks at Microsoft over real-world large-scale data sets: Smart Reply (SR) and Ambient Clinical Intelligence (ACI). In Smart Reply, sRank assists live customers with technical support by selecting the best reply from predefined solutions based on consumer and support agent messages. It achieves 11.7% gain in offline top-one accuracy on the SR task over the previous system, and has enabled 38.7% time reduction in composing messages in telemetry recorded since its general release in January 2021. In the ACI task, sRank selects relevant historical physician templates that serve as guidance for a text summarization model to generate higher quality medical notes. It achieves 35.5% top-one accuracy gain, along with 46% relative ROUGE-L gain in generated medical notes.
- Abstract(参考訳): 多くの実世界の応用における中核的な課題は、変更可能で有限な候補の集合から最高のドキュメントを探すことである。
既存の業界ソリューション、特にレイテンシに制約のあるサービスは、しばしば、スピードの質を犠牲にする類似性アルゴリズムに依存しています。
本稿では,自己学習型セマンティック・クロスアテンション・ランキング(sRank)という汎用的なセマンティック・ラーニング・ツー・ランク・フレームワークを提案する。
このトランスフォーマーベースのフレームワークは、可変トレーニングバッチサイズで線形ペアワイズロスを使用し、品質向上と高効率を実現し、現実の大規模データセットであるスマートリプライ(SR)とアンビエント・クリニティ・インテリジェンス(ACI)に対するMicrosoftの2つの業界タスクの利益を示すために効果的に適用されている。
Smart Replyでは、sRankは、コンシューマとサポートエージェントメッセージに基づいた事前定義されたソリューションから、最高の応答を選択することで、テクニカルサポートをライブユーザを支援する。
2021年1月の一般リリース以来のテレメトリにおけるメッセージの合成に38.7%の時間短縮を実現している。
ACIタスクでは、sRankはテキスト要約モデルのガイダンスとして、関連する歴史的な医師テンプレートを選択して、高品質な医療ノートを生成する。
35.5%の精度向上が達成され、46%のROUGE-Lが生成した医療用ノートで上昇している。
関連論文リスト
- What are the Essential Factors in Crafting Effective Long Context Multi-Hop Instruction Datasets? Insights and Best Practices [91.71951459594074]
拡張コンテキストウィンドウを持つLong Language Model (LLM) は、情報抽出、質問応答、複雑な計画シナリオなどのタスクを大幅に改善した。
既存のメソッドは通常、Self-Instructフレームワークを使用して、長いコンテキスト能力を改善するために命令チューニングデータを生成する。
本稿では,品質検証エージェント,シングルホップ質問生成エージェント,複数質問サンプリング戦略,マルチホップ質問マーガーエージェントを組み込んだマルチエージェント対話型マルチホップ生成フレームワークを提案する。
以上の結果から,我々の合成高品位長文指導データにより,多量の人体で訓練したモデルよりも,モデル性能が著しく向上することが示唆された。
論文 参考訳(メタデータ) (2024-09-03T13:30:00Z) - A Thorough Performance Benchmarking on Lightweight Embedding-based Recommender Systems [67.52782366565658]
State-of-the-art recommender system (RS) は、埋め込みベクトルによって符号化される分類的特徴に依存し、結果として非常に大きな埋め込みテーブルとなる。
軽量埋め込み型RSの繁栄にもかかわらず、評価プロトコルには幅広い多様性が見られる。
本研究では, LERSの性能, 効率, クロスタスク転送性について, 徹底的なベンチマークによる検討を行った。
論文 参考訳(メタデータ) (2024-06-25T07:45:00Z) - EWEK-QA: Enhanced Web and Efficient Knowledge Graph Retrieval for Citation-based Question Answering Systems [103.91826112815384]
引用ベースのQAシステムは2つの欠点に悩まされている。
彼らは通常、抽出された知識の源としてWebにのみ依存し、外部の知識ソースを追加することで、システムの効率を損なう。
システムに供給された知識の内容を充実させるため,Web と 効率的な知識グラフ (KG) 検索ソリューション (EWEK-QA) を提案する。
論文 参考訳(メタデータ) (2024-06-14T19:40:38Z) - Minimizing Factual Inconsistency and Hallucination in Large Language
Models [0.16417409087671928]
大規模言語モデル(LLM)は医療、教育、金融といった重要な分野で広く使われている。
本稿では,まず理性を生成する多段階フレームワークを提案する。
当社のフレームワークは,OpenAI GPT-3.5-turboの信頼性を14~25%向上し,2つのデータセットに対して16~22%向上させることで,従来の検索拡張生成(RAG)を改善する。
論文 参考訳(メタデータ) (2023-11-23T09:58:39Z) - Automatic Aorta Segmentation with Heavily Augmented, High-Resolution 3-D
ResUNet: Contribution to the SEG.A Challenge [0.1633301148398433]
この研究は、MICCAI 2023カンファレンスで組織されたSEGへのMedGIFTチームの貢献を示す。
ディープエンコーダ・デコーダアーキテクチャに基づく完全自動アルゴリズムを提案する。
ソースコードと事前訓練されたモデルを自由にリリースし、Grand-Challengeプラットフォーム上でアルゴリズムへのアクセスを提供する。
論文 参考訳(メタデータ) (2023-10-24T13:28:46Z) - EFaR 2023: Efficient Face Recognition Competition [51.77649060180531]
バイオメトリックス国際会議(IJCB 2023)における効率的な顔認識コンペティション(EFaR)の概要について述べる。
この競技会は6つの異なるチームから17の応募を受けた。
提案したソリューションは、様々なベンチマークで達成された検証精度の重み付けスコアと、浮動小数点演算数とモデルサイズによって与えられるデプロイ可能性に基づいてランク付けされる。
論文 参考訳(メタデータ) (2023-08-08T09:58:22Z) - An Explainable Artificial Intelligence Framework for Quality-Aware IoE
Service Delivery [17.146527100570285]
本稿では、品質を意識したIoEサービス配信のための説明可能な人工知能(XAI)フレームワークを提供する。
XAI対応品質対応IoEサービス配信アルゴリズムは,アンサンブルベースの回帰モデルを用いて実装されている。
実験の結果, アップリンク改善率はAdaBoostとExtra Treesでそれぞれ42.43%, 16.32%となった。
論文 参考訳(メタデータ) (2022-01-26T08:59:00Z) - Newer is not always better: Rethinking transferability metrics, their
peculiarities, stability and performance [5.650647159993238]
小さなカスタマイズされたデータセット上で、大規模で事前訓練された画像と言語モデルの微調整が人気を集めている。
共分散推定における統計的問題により,Hスコアの性能が低下することが示唆された。
そこで我々は,そのような設定における相対的精度に対する相関性能を補正し,評価することを推奨する。
論文 参考訳(メタデータ) (2021-10-13T17:24:12Z) - Advanced Long-context End-to-end Speech Recognition Using
Context-expanded Transformers [56.56220390953412]
コンフォーメータアーキテクチャを導入することで、精度をさらに向上させ、以前の作業を拡張します。
拡張トランスフォーマーは、最先端のエンドツーエンドのASR性能を提供する。
論文 参考訳(メタデータ) (2021-04-19T16:18:00Z) - Dynamic Acoustic Unit Augmentation With BPE-Dropout for Low-Resource
End-to-End Speech Recognition [62.94773371761236]
我々は、OOVレートの高い低リソースセットアップで効果的なエンドツーエンドASRシステムを構築することを検討します。
本稿では,BPE-dropout法に基づく動的音響ユニット拡張法を提案する。
我々の単言語トルココンフォーマーは22.2%の文字誤り率(CER)と38.9%の単語誤り率(WER)の競争結果を確立した。
論文 参考訳(メタデータ) (2021-03-12T10:10:13Z) - Efficient Neural Query Auto Completion [17.58784759652327]
クエリオートコンプリートシステムでは,3つの大きな課題が報告されている。
従来のQACシステムは、検索ログのクエリ候補頻度などの手作り機能に依存している。
本稿では,これらの課題を克服するために,効果的なコンテキストモデリングを用いた効率的なニューラルネットワークQACシステムを提案する。
論文 参考訳(メタデータ) (2020-08-06T21:28:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。