論文の概要: Biological Factor Regulatory Neural Network
- arxiv url: http://arxiv.org/abs/2304.04982v1
- Date: Tue, 11 Apr 2023 04:57:02 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-12 16:08:50.764978
- Title: Biological Factor Regulatory Neural Network
- Title(参考訳): 生体因子制御ニューラルネットワーク
- Authors: Xinnan Dai, Caihua Shan, Jie Zheng, Xiaoxiao Li, Dongsheng Li
- Abstract要約: BFReg-NN(Bological Factor Regulatory Neural Network)は、細胞系の生物学的因子間の関係をモデル化するための一般的なフレームワークである。
BFReg-NNは遺伝子発現データから始まり、既存のほとんどの生物学的知識をモデルにマージすることができる。
今回のケーススタディでは,BFReg-NNが発見した重要な知見が生物学的文献と一致していることが示されている。
- 参考スコア(独自算出の注目度): 22.561838105271853
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Genes are fundamental for analyzing biological systems and many recent works
proposed to utilize gene expression for various biological tasks by deep
learning models. Despite their promising performance, it is hard for deep
neural networks to provide biological insights for humans due to their
black-box nature. Recently, some works integrated biological knowledge with
neural networks to improve the transparency and performance of their models.
However, these methods can only incorporate partial biological knowledge,
leading to suboptimal performance. In this paper, we propose the Biological
Factor Regulatory Neural Network (BFReg-NN), a generic framework to model
relations among biological factors in cell systems. BFReg-NN starts from gene
expression data and is capable of merging most existing biological knowledge
into the model, including the regulatory relations among genes or proteins
(e.g., gene regulatory networks (GRN), protein-protein interaction networks
(PPI)) and the hierarchical relations among genes, proteins and pathways (e.g.,
several genes/proteins are contained in a pathway). Moreover, BFReg-NN also has
the ability to provide new biologically meaningful insights because of its
white-box characteristics. Experimental results on different gene
expression-based tasks verify the superiority of BFReg-NN compared with
baselines. Our case studies also show that the key insights found by BFReg-NN
are consistent with the biological literature.
- Abstract(参考訳): 遺伝子は生物学的システムの解析に基本的であり, 深層学習モデルによる様々な生物学的タスクに遺伝子発現を活用するための最近の研究が数多く提案されている。
有望な性能にもかかわらず、深いニューラルネットワークはブラックボックスの性質のため、人間に生物学的洞察を提供するのは難しい。
近年、ニューラルネットワークと生物学的知識を統合して、モデルの透明性と性能を改善している研究もある。
しかし、これらの手法は部分的な生物学的知識のみを組み込むことができ、最適以下の性能をもたらす。
本稿では,細胞系の生物学的因子間の関係をモデル化する汎用的な枠組みであるBFReg-NNを提案する。
BFReg-NNは遺伝子発現データから始まり、遺伝子またはタンパク質間の調節関係(例えば、遺伝子調節ネットワーク(GRN)、タンパク質-タンパク質相互作用ネットワーク(PPI))、遺伝子、タンパク質、経路間の階層関係(例えば、いくつかの遺伝子/タンパク質が経路に含まれる)を含む、既存の生物学的知識をモデルにマージすることができる。
さらに、BFReg-NNはホワイトボックスの特徴から、生物学的に意味のある新たな洞察を提供する能力も持っている。
BFReg-NNの優位性は,BFReg-NNとBFReg-NNの相違に比較して検証した。
BFReg-NNが発見した重要な知見は生物学的文献と一致している。
関連論文リスト
- Predicting Genetic Mutation from Whole Slide Images via Biomedical-Linguistic Knowledge Enhanced Multi-label Classification [119.13058298388101]
遺伝子変異予測性能を向上させるため,生物知識を付加したPathGenomic Multi-label Transformerを開発した。
BPGTはまず、2つの慎重に設計されたモジュールによって遺伝子前駆体を構成する新しい遺伝子エンコーダを確立する。
BPGTはその後ラベルデコーダを設計し、最終的に2つの調整されたモジュールによる遺伝的突然変異予測を行う。
論文 参考訳(メタデータ) (2024-06-05T06:42:27Z) - An Association Test Based on Kernel-Based Neural Networks for Complex
Genetic Association Analysis [0.8221435109014762]
従来のニューラルネットワークと線形混合モデルの強度を相乗化するカーネルベースニューラルネットワークモデル(KNN)を開発した。
MINQUEに基づく遺伝子変異と表現型との結合性を評価する試験。
線形および非線形/非付加的遺伝子効果の評価と解釈のための2つの追加試験。
論文 参考訳(メタデータ) (2023-12-06T05:02:28Z) - PhyloGFN: Phylogenetic inference with generative flow networks [57.104166650526416]
本稿では,系統学における2つの中核的問題に対処するための生成フローネットワーク(GFlowNets)の枠組みを紹介する。
GFlowNetsは複雑な構造をサンプリングするのに適しているため、木トポロジー上の多重モード後部分布を探索し、サンプリングするのに自然な選択である。
我々は, 実際のベンチマークデータセット上で, 様々な, 高品質な進化仮説を生成できることを実証した。
論文 参考訳(メタデータ) (2023-10-12T23:46:08Z) - Stability Analysis of Non-Linear Classifiers using Gene Regulatory
Neural Network for Biological AI [2.0755366440393743]
二重層転写翻訳化学反応モデルを用いた遺伝子パーセプトロンの数学的モデルを構築した。
我々は全接続GRNNサブネットワーク内の各遺伝子パーセプトロンの安定性解析を行い、時間的および安定した濃度出力を決定する。
論文 参考訳(メタデータ) (2023-09-14T21:37:38Z) - Dive into the Power of Neuronal Heterogeneity [8.6837371869842]
進化戦略(ES)を用いて、スパイキングニューラルネットワーク(SNN)を最適化し、ランダムネットワークにおける異種ニューロンのより堅牢な最適化を実現するためのバックプロパゲーションベースの手法が直面する課題を示す。
膜時間定数は神経異質性において重要な役割を担っており、その分布は生物学的実験で観察されたものと類似している。
論文 参考訳(メタデータ) (2023-05-19T07:32:29Z) - Explainable Multilayer Graph Neural Network for Cancer Gene Prediction [21.83218536069088]
本稿では,癌遺伝子の同定にEMGNN(Explainable Multilayer Graph Neural Network)アプローチを提案する。
単一の生物学的ネットワーク上の従来のグラフ学習とは異なり、EMGNNは多層グラフニューラルネットワークを使用して、複数の生物学的ネットワークから正確ながん遺伝子予測を学習する。
提案手法は, 従来手法よりも平均7.15%, 精度・リコール曲線 (AUPR) で改善されている。
論文 参考訳(メタデータ) (2023-01-20T23:57:12Z) - Inferring Gene Regulatory Neural Networks for Bacterial Decision Making
in Biofilms [4.459301404374565]
細菌細胞は環境を学習するのに用いられる様々な外部信号に敏感である。
遺伝性遺伝子制御ニューラルネットワーク(GRNN)の動作は、細胞決定を可能にする。
GRNNはバイオハイブリッドコンピューティングシステムのための計算タスクを実行できる。
論文 参考訳(メタデータ) (2023-01-10T22:07:33Z) - Unsupervised ensemble-based phenotyping helps enhance the
discoverability of genes related to heart morphology [57.25098075813054]
我々はUn Phenotype Ensemblesという名の遺伝子発見のための新しいフレームワークを提案する。
教師なしの方法で学習された表現型のセットをプールすることで、冗長だが非常に表現性の高い表現を構築する。
これらの表現型は、(GWAS)を介して分析され、高い自信と安定した関連のみを保持する。
論文 参考訳(メタデータ) (2023-01-07T18:36:44Z) - Relation Embedding based Graph Neural Networks for Handling
Heterogeneous Graph [58.99478502486377]
我々は、同種GNNが不均一グラフを扱うのに十分な能力を持つように、シンプルで効率的なフレームワークを提案する。
具体的には、エッジ型関係と自己ループ接続の重要性を埋め込むために、関係1つのパラメータのみを使用する関係埋め込みベースのグラフニューラルネットワーク(RE-GNN)を提案する。
論文 参考訳(メタデータ) (2022-09-23T05:24:18Z) - Complexity-based speciation and genotype representation for
neuroevolution [81.21462458089142]
本稿では、進化するネットワークを隠されたニューロンの数に基づいて種に分類する神経進化の種分化原理を提案する。
提案された種分化原理は、種および生態系全体における多様性の促進と保存を目的として設計されたいくつかの技術で採用されている。
論文 参考訳(メタデータ) (2020-10-11T06:26:56Z) - Exploiting Heterogeneity in Operational Neural Networks by Synaptic
Plasticity [87.32169414230822]
最近提案されたネットワークモデルであるオペレーショナルニューラルネットワーク(ONN)は、従来の畳み込みニューラルネットワーク(CNN)を一般化することができる。
本研究では, 生体ニューロンにおける本質的な学習理論を示すSynaptic Plasticityパラダイムに基づいて, ネットワークの隠蔽ニューロンに対する最強演算子集合の探索に焦点をあてる。
高難易度問題に対する実験結果から、神経細胞や層が少なくても、GISベースのONNよりも優れた学習性能が得られることが示された。
論文 参考訳(メタデータ) (2020-08-21T19:03:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。