Actually Sparse Variational Gaussian Processes
- URL: http://arxiv.org/abs/2304.05091v1
- Date: Tue, 11 Apr 2023 09:38:58 GMT
- Title: Actually Sparse Variational Gaussian Processes
- Authors: Harry Jake Cunningham, Daniel Augusto de Souza, So Takao, Mark van der
Wilk, Marc Peter Deisenroth
- Abstract summary: We propose a new class of inter-domain variational GP constructed by projecting a GP onto a set of compactly supported B-spline basis functions.
This allows us to very efficiently model fast-varying spatial phenomena with tens of thousands of inducing variables.
- Score: 20.71289963037696
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Gaussian processes (GPs) are typically criticised for their unfavourable
scaling in both computational and memory requirements. For large datasets,
sparse GPs reduce these demands by conditioning on a small set of inducing
variables designed to summarise the data. In practice however, for large
datasets requiring many inducing variables, such as low-lengthscale spatial
data, even sparse GPs can become computationally expensive, limited by the
number of inducing variables one can use. In this work, we propose a new class
of inter-domain variational GP, constructed by projecting a GP onto a set of
compactly supported B-spline basis functions. The key benefit of our approach
is that the compact support of the B-spline basis functions admits the use of
sparse linear algebra to significantly speed up matrix operations and
drastically reduce the memory footprint. This allows us to very efficiently
model fast-varying spatial phenomena with tens of thousands of inducing
variables, where previous approaches failed.
Related papers
- AcceleratedLiNGAM: Learning Causal DAGs at the speed of GPUs [57.12929098407975]
We show that by efficiently parallelizing existing causal discovery methods, we can scale them to thousands of dimensions.
Specifically, we focus on the causal ordering subprocedure in DirectLiNGAM and implement GPU kernels to accelerate it.
This allows us to apply DirectLiNGAM to causal inference on large-scale gene expression data with genetic interventions yielding competitive results.
arXiv Detail & Related papers (2024-03-06T15:06:11Z) - Multi-Grid Tensorized Fourier Neural Operator for High-Resolution PDEs [93.82811501035569]
We introduce a new data efficient and highly parallelizable operator learning approach with reduced memory requirement and better generalization.
MG-TFNO scales to large resolutions by leveraging local and global structures of full-scale, real-world phenomena.
We demonstrate superior performance on the turbulent Navier-Stokes equations where we achieve less than half the error with over 150x compression.
arXiv Detail & Related papers (2023-09-29T20:18:52Z) - Winner-Take-All Column Row Sampling for Memory Efficient Adaptation of Language Model [89.8764435351222]
We propose a new family of unbiased estimators called WTA-CRS, for matrix production with reduced variance.
Our work provides both theoretical and experimental evidence that, in the context of tuning transformers, our proposed estimators exhibit lower variance compared to existing ones.
arXiv Detail & Related papers (2023-05-24T15:52:08Z) - Revisiting Active Sets for Gaussian Process Decoders [0.0]
We develop a new estimate of the log-marginal likelihood based on recently discovered links to cross-validation.
We demonstrate that the resulting active sets (SAS) approximation significantly improves the robustness of GP decoder training.
arXiv Detail & Related papers (2022-09-10T10:49:31Z) - Shallow and Deep Nonparametric Convolutions for Gaussian Processes [0.0]
We introduce a nonparametric process convolution formulation for GPs that alleviates weaknesses by using a functional sampling approach.
We propose a composition of these nonparametric convolutions that serves as an alternative to classic deep GP models.
arXiv Detail & Related papers (2022-06-17T19:03:04Z) - Scaling Gaussian Process Optimization by Evaluating a Few Unique
Candidates Multiple Times [119.41129787351092]
We show that sequential black-box optimization based on GPs can be made efficient by sticking to a candidate solution for multiple evaluation steps.
We modify two well-established GP-Opt algorithms, GP-UCB and GP-EI to adapt rules from batched GP-Opt.
arXiv Detail & Related papers (2022-01-30T20:42:14Z) - Non-Gaussian Gaussian Processes for Few-Shot Regression [71.33730039795921]
We propose an invertible ODE-based mapping that operates on each component of the random variable vectors and shares the parameters across all of them.
NGGPs outperform the competing state-of-the-art approaches on a diversified set of benchmarks and applications.
arXiv Detail & Related papers (2021-10-26T10:45:25Z) - SigGPDE: Scaling Sparse Gaussian Processes on Sequential Data [16.463077353773603]
We develop SigGPDE, a new scalable sparse variational inference framework for Gaussian Processes (GPs) on sequential data.
We show that the gradients of the GP signature kernel are solutions of a hyperbolic partial differential equation (PDE)
This theoretical insight allows us to build an efficient back-propagation algorithm to optimize the ELBO.
arXiv Detail & Related papers (2021-05-10T09:10:17Z) - MuyGPs: Scalable Gaussian Process Hyperparameter Estimation Using Local
Cross-Validation [1.2233362977312945]
We present MuyGPs, a novel efficient GP hyper parameter estimation method.
MuyGPs builds upon prior methods that take advantage of the nearest neighbors structure of the data.
We show that our method outperforms all known competitors both in terms of time-to-solution and the root mean squared error of the predictions.
arXiv Detail & Related papers (2021-04-29T18:10:21Z) - Sparse within Sparse Gaussian Processes using Neighbor Information [23.48831040972227]
We introduce a novel hierarchical prior, which imposes sparsity on the set of inducing variables.
We experimentally show considerable computational gains compared to standard sparse GPs.
arXiv Detail & Related papers (2020-11-10T11:07:53Z) - Generalized Matrix Factorization: efficient algorithms for fitting
generalized linear latent variable models to large data arrays [62.997667081978825]
Generalized Linear Latent Variable models (GLLVMs) generalize such factor models to non-Gaussian responses.
Current algorithms for estimating model parameters in GLLVMs require intensive computation and do not scale to large datasets.
We propose a new approach for fitting GLLVMs to high-dimensional datasets, based on approximating the model using penalized quasi-likelihood.
arXiv Detail & Related papers (2020-10-06T04:28:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.