論文の概要: Neural Network Architectures
- arxiv url: http://arxiv.org/abs/2304.05133v1
- Date: Tue, 11 Apr 2023 10:54:36 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-12 15:22:50.063156
- Title: Neural Network Architectures
- Title(参考訳): ニューラルネットワークアーキテクチャ
- Authors: Evelyn Herberg
- Abstract要約: これらの講義ノートは、数学的観点からニューラルネットワークアーキテクチャの概要を提供する。
以下は、Feedforward Neural Network、Convolutional Neural Network、ResNet、Recurrent Neural Networkである。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: These lecture notes provide an overview of Neural Network architectures from
a mathematical point of view. Especially, Machine Learning with Neural Networks
is seen as an optimization problem. Covered are an introduction to Neural
Networks and the following architectures: Feedforward Neural Network,
Convolutional Neural Network, ResNet, and Recurrent Neural Network.
- Abstract(参考訳): これらの講義ノートは、数学的観点からニューラルネットワークアーキテクチャの概要を提供する。
特に、ニューラルネットワークを用いた機械学習は最適化の問題と見なされる。
coverは、ニューラルネットワークと以下のアーキテクチャを紹介する。feedforwardニューラルネットワーク、畳み込みニューラルネットワーク、resnet、recurrentニューラルネットワーク。
関連論文リスト
- Coding schemes in neural networks learning classification tasks [52.22978725954347]
完全接続型広義ニューラルネットワーク学習タスクについて検討する。
ネットワークが強力なデータ依存機能を取得することを示す。
驚くべきことに、内部表現の性質は神経の非線形性に大きく依存する。
論文 参考訳(メタデータ) (2024-06-24T14:50:05Z) - Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
本稿では,ニューラルネットワークをパラメータの計算グラフとして表現することを提案する。
我々のアプローチは、ニューラルネットワークグラフを多種多様なアーキテクチャでエンコードする単一モデルを可能にする。
本稿では,暗黙的ニューラル表現の分類や編集など,幅広いタスクにおける本手法の有効性を示す。
論文 参考訳(メタデータ) (2024-03-18T18:01:01Z) - Web Neural Network with Complete DiGraphs [8.2727500676707]
現在のニューラルネットワークは、神経細胞、畳み込み、再発などの脳構造を曖昧に模倣する構造を持っている。
本稿では、ニューロン接続にサイクルを導入し、他のネットワーク層でよく見られるシーケンシャルな性質を除去することにより、新たな構造特性を付加する。
さらに、モデルには、ニューラルネットワークにインスパイアされた連続的な入力と出力があり、ネットワークは最終結果を返すのではなく、分類のプロセスを学ぶことができる。
論文 参考訳(メタデータ) (2024-01-07T05:12:10Z) - Riemannian Residual Neural Networks [58.925132597945634]
残余ニューラルネットワーク(ResNet)の拡張方法を示す。
ResNetは、機械学習において、有益な学習特性、優れた経験的結果、そして様々なニューラルネットワークを構築する際に容易に組み込める性質のために、ユビキタスになった。
論文 参考訳(メタデータ) (2023-10-16T02:12:32Z) - Deep Neural Networks as the Semi-classical Limit of Topological Quantum Neural Networks: The problem of generalisation [0.3871780652193725]
本稿では,Deep Neural Networksにおける一般化問題を理解するために,このフレームワークを提案する。
この種のフレームワークは、トレーニングステップ中のディープニューラルネットワークの過剰適合挙動と、それに対応する一般化能力を説明する。
開発した新しいアルゴリズムを適用し、標準的なニューラルネットワークと同様の結果を得るが、トレーニングは必要としないことを示す。
論文 参考訳(メタデータ) (2022-10-25T03:14:59Z) - Extrapolation and Spectral Bias of Neural Nets with Hadamard Product: a
Polynomial Net Study [55.12108376616355]
NTKの研究は典型的なニューラルネットワークアーキテクチャに特化しているが、アダマール製品(NNs-Hp)を用いたニューラルネットワークには不完全である。
本研究では,ニューラルネットワークの特別なクラスであるNNs-Hpに対する有限幅Kの定式化を導出する。
我々は,カーネル回帰予測器と関連するNTKとの等価性を証明し,NTKの適用範囲を拡大する。
論文 参考訳(メタデータ) (2022-09-16T06:36:06Z) - Deep Neural Networks as Complex Networks [1.704936863091649]
我々は、重み付きグラフとしてディープニューラルネットワーク(DNN)を表現するために複雑ネットワーク理論を用いる。
我々は、DNNを動的システムとして研究するためのメトリクスを導入し、その粒度は、重みから神経細胞を含む層まで様々である。
我々の測定値が低性能ネットワークと高パフォーマンスネットワークを区別していることが示される。
論文 参考訳(メタデータ) (2022-09-12T16:26:04Z) - Rank Diminishing in Deep Neural Networks [71.03777954670323]
ニューラルネットワークのランクは、層をまたがる情報を測定する。
これは機械学習の幅広い領域にまたがる重要な構造条件の例である。
しかし、ニューラルネットワークでは、低ランク構造を生み出す固有のメカニズムはあいまいで不明瞭である。
論文 参考訳(メタデータ) (2022-06-13T12:03:32Z) - Anomaly-resistant Graph Neural Networks via Neural Architecture Search [0.0]
本稿では,異常ノードを認識し,情報集約から自動的に除去するアルゴリズムを提案する。
各種実世界のデータセットを用いた実験により,提案したニューラルネットワーク検索に基づく異常抵抗グラフニューラルネットワーク(NASAR-GNN)が実際に有効であることが示された。
論文 参考訳(メタデータ) (2021-11-22T18:30:59Z) - Mastering high-dimensional dynamics with Hamiltonian neural networks [0.0]
マップ・ビルディング・パースペクティブは、従来のニューラルネットワークよりもハミルトニアン・ニューラル・ネットワークの優位性を解明する。
その結果、データ、次元、ニューラルネットワーク学習性能の臨界関係を明らかにした。
論文 参考訳(メタデータ) (2020-07-28T21:14:42Z) - Graph Structure of Neural Networks [104.33754950606298]
ニューラルネットワークのグラフ構造が予測性能にどのように影響するかを示す。
リレーショナルグラフの"スイートスポット"は、予測性能を大幅に改善したニューラルネットワークにつながる。
トップパフォーマンスニューラルネットワークは、実際の生物学的ニューラルネットワークと驚くほどよく似たグラフ構造を持つ。
論文 参考訳(メタデータ) (2020-07-13T17:59:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。