論文の概要: Web Neural Network with Complete DiGraphs
- arxiv url: http://arxiv.org/abs/2401.04134v1
- Date: Sun, 7 Jan 2024 05:12:10 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-10 19:01:31.375172
- Title: Web Neural Network with Complete DiGraphs
- Title(参考訳): 完全 DiGraph を用いた Web ニューラルネットワーク
- Authors: Frank Li
- Abstract要約: 現在のニューラルネットワークは、神経細胞、畳み込み、再発などの脳構造を曖昧に模倣する構造を持っている。
本稿では、ニューロン接続にサイクルを導入し、他のネットワーク層でよく見られるシーケンシャルな性質を除去することにより、新たな構造特性を付加する。
さらに、モデルには、ニューラルネットワークにインスパイアされた連続的な入力と出力があり、ネットワークは最終結果を返すのではなく、分類のプロセスを学ぶことができる。
- 参考スコア(独自算出の注目度): 8.2727500676707
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper introduces a new neural network model that aims to mimic the
biological brain more closely by structuring the network as a complete directed
graph that processes continuous data for each timestep. Current neural networks
have structures that vaguely mimic the brain structure, such as neurons,
convolutions, and recurrence. The model proposed in this paper adds additional
structural properties by introducing cycles into the neuron connections and
removing the sequential nature commonly seen in other network layers.
Furthermore, the model has continuous input and output, inspired by spiking
neural networks, which allows the network to learn a process of classification,
rather than simply returning the final result.
- Abstract(参考訳): 本稿では, 時間ステップ毎に連続データを処理する完全有向グラフとしてネットワークを構造化することで, 生体脳をより密接に模倣することを目的とした新しいニューラルネットワークモデルを提案する。
現在のニューラルネットワークは、神経細胞、畳み込み、再発などの脳構造を曖昧に模倣する構造を持っている。
本稿では、ニューロン接続にサイクルを導入し、他のネットワーク層でよく見られるシーケンシャルな性質を除去することにより、新たな構造特性を付加する。
さらに、モデルには、ニューラルネットワークにインスパイアされた連続的な入力と出力があり、ネットワークは最終結果を返すのではなく、分類のプロセスを学ぶことができる。
関連論文リスト
- Coding schemes in neural networks learning classification tasks [52.22978725954347]
完全接続型広義ニューラルネットワーク学習タスクについて検討する。
ネットワークが強力なデータ依存機能を取得することを示す。
驚くべきことに、内部表現の性質は神経の非線形性に大きく依存する。
論文 参考訳(メタデータ) (2024-06-24T14:50:05Z) - Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
本稿では,ニューラルネットワークをパラメータの計算グラフとして表現することを提案する。
我々のアプローチは、ニューラルネットワークグラフを多種多様なアーキテクチャでエンコードする単一モデルを可能にする。
本稿では,暗黙的ニューラル表現の分類や編集など,幅広いタスクにおける本手法の有効性を示す。
論文 参考訳(メタデータ) (2024-03-18T18:01:01Z) - Expressivity of Spiking Neural Networks [15.181458163440634]
本研究では,ニューロンの発射時間内に情報を符号化したスパイクニューラルネットワークの能力について検討する。
ReLUネットワークとは対照的に、スパイクニューラルネットワークは連続関数と不連続関数の両方を実現することができる。
論文 参考訳(メタデータ) (2023-08-16T08:45:53Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
本研究では,通常の逆カオス時系列を分類するために訓練されたニューラルネットワークの内部動作について検討する。
入力周期性とアクティベーション周期の関係は,LKCNNモデルの性能向上の鍵となる。
論文 参考訳(メタデータ) (2023-06-04T08:53:27Z) - Connected Hidden Neurons (CHNNet): An Artificial Neural Network for
Rapid Convergence [0.6218519716921521]
我々は,同じ隠蔽層に隠されたニューロンが相互に相互に結合し,急速に収束する,より堅牢な人工知能ニューラルネットワークモデルを提案する。
深層ネットワークにおける提案モデルの実験研究により,従来のフィードフォワードニューラルネットワークと比較して,モデルが顕著に収束率を上昇させることを示した。
論文 参考訳(メタデータ) (2023-05-17T14:00:38Z) - Spiking neural network for nonlinear regression [68.8204255655161]
スパイクニューラルネットワークは、メモリとエネルギー消費を大幅に削減する可能性を持っている。
彼らは、次世代のニューロモルフィックハードウェアによって活用できる時間的および神経的疎結合を導入する。
スパイキングニューラルネットワークを用いた回帰フレームワークを提案する。
論文 参考訳(メタデータ) (2022-10-06T13:04:45Z) - Neuro-symbolic computing with spiking neural networks [0.6035125735474387]
我々は、スパイクベースのグラフアルゴリズムに関するこれまでの研究を、スパイクニューロンを用いてシンボリックおよびマルチリレーショナル情報をエンコードする方法を実証することによって拡張した。
導入されたフレームワークは、グラフ埋め込みパラダイムと、エラーバックプロパゲーションを用いたスパイクニューラルネットワークのトレーニングの最近の進歩を組み合わせることで実現されている。
論文 参考訳(メタデータ) (2022-08-04T10:49:34Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
識別タスクを解くニューラルネットワークが、入力から直接畳み込み構造を学習できることを示す。
データモデルを慎重に設計することにより、このパターンの出現は、入力の非ガウス的、高次局所構造によって引き起こされることを示す。
論文 参考訳(メタデータ) (2022-02-01T17:11:13Z) - Generalizable Machine Learning in Neuroscience using Graph Neural
Networks [0.0]
ニューラルネットワークは、ニューロンレベルの動的予測と行動状態の分類の両方において、非常によく機能することを示す。
実験の結果, グラフニューラルネットワークは構造モデルよりも優れ, 目に見えない生物の一般化に優れていた。
論文 参考訳(メタデータ) (2020-10-16T18:09:46Z) - Graph Structure of Neural Networks [104.33754950606298]
ニューラルネットワークのグラフ構造が予測性能にどのように影響するかを示す。
リレーショナルグラフの"スイートスポット"は、予測性能を大幅に改善したニューラルネットワークにつながる。
トップパフォーマンスニューラルネットワークは、実際の生物学的ニューラルネットワークと驚くほどよく似たグラフ構造を持つ。
論文 参考訳(メタデータ) (2020-07-13T17:59:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。