Loop Closure Detection Based on Object-level Spatial Layout and Semantic
Consistency
- URL: http://arxiv.org/abs/2304.05146v2
- Date: Fri, 14 Apr 2023 08:29:06 GMT
- Title: Loop Closure Detection Based on Object-level Spatial Layout and Semantic
Consistency
- Authors: Xingwu Ji, Peilin Liu, Haochen Niu, Xiang Chen, Rendong Ying, Fei Wen
- Abstract summary: We present an object-based loop closure detection method based on the spatial layout and semanic consistency of the 3D scene graph.
Experimental results demonstrate that our proposed data association approach can construct more accurate 3D semantic maps.
- Score: 14.694754836704819
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Visual simultaneous localization and mapping (SLAM) systems face challenges
in detecting loop closure under the circumstance of large viewpoint changes. In
this paper, we present an object-based loop closure detection method based on
the spatial layout and semanic consistency of the 3D scene graph. Firstly, we
propose an object-level data association approach based on the semantic
information from semantic labels, intersection over union (IoU), object color,
and object embedding. Subsequently, multi-view bundle adjustment with the
associated objects is utilized to jointly optimize the poses of objects and
cameras. We represent the refined objects as a 3D spatial graph with semantics
and topology. Then, we propose a graph matching approach to select
correspondence objects based on the structure layout and semantic property
similarity of vertices' neighbors. Finally, we jointly optimize camera
trajectories and object poses in an object-level pose graph optimization, which
results in a globally consistent map. Experimental results demonstrate that our
proposed data association approach can construct more accurate 3D semantic
maps, and our loop closure method is more robust than point-based and
object-based methods in circumstances with large viewpoint changes.
Related papers
- Open-Vocabulary Octree-Graph for 3D Scene Understanding [54.11828083068082]
Octree-Graph is a novel scene representation for open-vocabulary 3D scene understanding.
An adaptive-octree structure is developed that stores semantics and depicts the occupancy of an object adjustably according to its shape.
arXiv Detail & Related papers (2024-11-25T10:14:10Z) - Multiview Scene Graph [7.460438046915524]
A proper scene representation is central to the pursuit of spatial intelligence.
We propose to build Multiview Scene Graphs (MSG) from unposed images.
MSG represents a scene topologically with interconnected place and object nodes.
arXiv Detail & Related papers (2024-10-15T02:04:05Z) - GOReloc: Graph-based Object-Level Relocalization for Visual SLAM [17.608119427712236]
This article introduces a novel method for object-level relocalization of robotic systems.
It determines the pose of a camera sensor by robustly associating the object detections in the current frame with 3D objects in a lightweight object-level map.
arXiv Detail & Related papers (2024-08-15T03:54:33Z) - SeMoLi: What Moves Together Belongs Together [51.72754014130369]
We tackle semi-supervised object detection based on motion cues.
Recent results suggest that motion-based clustering methods can be used to pseudo-label instances of moving objects.
We re-think this approach and suggest that both, object detection, as well as motion-inspired pseudo-labeling, can be tackled in a data-driven manner.
arXiv Detail & Related papers (2024-02-29T18:54:53Z) - SemanticTopoLoop: Semantic Loop Closure With 3D Topological Graph Based
on Quadric-Level Object Map [0.8158530638728501]
Loop closure is one of the crucial components in SLAM.
Traditional appearance-based methods, such as bag-of-words models, are often limited by local 2D features and the volume of training data.
arXiv Detail & Related papers (2023-11-06T02:30:30Z) - An Object SLAM Framework for Association, Mapping, and High-Level Tasks [12.62957558651032]
We present a comprehensive object SLAM framework that focuses on object-based perception and object-oriented robot tasks.
A range of public datasets and real-world results have been used to evaluate the proposed object SLAM framework for its efficient performance.
arXiv Detail & Related papers (2023-05-12T08:10:14Z) - 3D Video Object Detection with Learnable Object-Centric Global
Optimization [65.68977894460222]
Correspondence-based optimization is the cornerstone for 3D scene reconstruction but is less studied in 3D video object detection.
We propose BA-Det, an end-to-end optimizable object detector with object-centric temporal correspondence learning and featuremetric object bundle adjustment.
arXiv Detail & Related papers (2023-03-27T17:39:39Z) - Explicit3D: Graph Network with Spatial Inference for Single Image 3D
Object Detection [35.85544715234846]
We propose a dynamic sparse graph pipeline named Explicit3D based on object geometry and semantics features.
Our experimental results on the SUN RGB-D dataset demonstrate that our Explicit3D achieves better performance balance than the-state-of-the-art.
arXiv Detail & Related papers (2023-02-13T16:19:54Z) - Fusing Local Similarities for Retrieval-based 3D Orientation Estimation
of Unseen Objects [70.49392581592089]
We tackle the task of estimating the 3D orientation of previously-unseen objects from monocular images.
We follow a retrieval-based strategy and prevent the network from learning object-specific features.
Our experiments on the LineMOD, LineMOD-Occluded, and T-LESS datasets show that our method yields a significantly better generalization to unseen objects than previous works.
arXiv Detail & Related papers (2022-03-16T08:53:00Z) - Objects are Different: Flexible Monocular 3D Object Detection [87.82253067302561]
We propose a flexible framework for monocular 3D object detection which explicitly decouples the truncated objects and adaptively combines multiple approaches for object depth estimation.
Experiments demonstrate that our method outperforms the state-of-the-art method by relatively 27% for the moderate level and 30% for the hard level in the test set of KITTI benchmark.
arXiv Detail & Related papers (2021-04-06T07:01:28Z) - Object-Centric Multi-View Aggregation [86.94544275235454]
We present an approach for aggregating a sparse set of views of an object in order to compute a semi-implicit 3D representation in the form of a volumetric feature grid.
Key to our approach is an object-centric canonical 3D coordinate system into which views can be lifted, without explicit camera pose estimation.
We show that computing a symmetry-aware mapping from pixels to the canonical coordinate system allows us to better propagate information to unseen regions.
arXiv Detail & Related papers (2020-07-20T17:38:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.