論文の概要: DiscoGen: Learning to Discover Gene Regulatory Networks
- arxiv url: http://arxiv.org/abs/2304.05823v1
- Date: Wed, 12 Apr 2023 13:02:49 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-13 15:13:03.008652
- Title: DiscoGen: Learning to Discover Gene Regulatory Networks
- Title(参考訳): DiscoGen: 遺伝子制御ネットワークの発見を学ぶ
- Authors: Nan Rosemary Ke, Sara-Jane Dunn, Jorg Bornschein, Silvia Chiappa,
Melanie Rey, Jean-Baptiste Lespiau, Albin Cassirer, Jane Wang, Theophane
Weber, David Barrett, Matthew Botvinick, Anirudh Goyal, Mike Mozer, Danilo
Rezende
- Abstract要約: 遺伝子制御ネットワーク(GRN)の正確な推論は、生物学における重要な課題である。
ニューラルネットワークに基づく因果発見手法の最近の進歩は因果発見を著しく改善している。
生物学に最先端の因果発見手法を適用することは、ノイズの多いデータや多数のサンプルのような課題を引き起こす。
本稿では、遺伝子発現の測定をノイズ化し、介入データを処理するニューラルネットワークベースのGRN発見手法であるDiscoGenを紹介する。
- 参考スコア(独自算出の注目度): 30.83574314774383
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurately inferring Gene Regulatory Networks (GRNs) is a critical and
challenging task in biology. GRNs model the activatory and inhibitory
interactions between genes and are inherently causal in nature. To accurately
identify GRNs, perturbational data is required. However, most GRN discovery
methods only operate on observational data. Recent advances in neural
network-based causal discovery methods have significantly improved causal
discovery, including handling interventional data, improvements in performance
and scalability. However, applying state-of-the-art (SOTA) causal discovery
methods in biology poses challenges, such as noisy data and a large number of
samples. Thus, adapting the causal discovery methods is necessary to handle
these challenges. In this paper, we introduce DiscoGen, a neural network-based
GRN discovery method that can denoise gene expression measurements and handle
interventional data. We demonstrate that our model outperforms SOTA neural
network-based causal discovery methods.
- Abstract(参考訳): 遺伝子制御ネットワーク(GRN)の正確な推論は、生物学における重要な課題である。
GRNは遺伝子間の活性化と阻害の相互作用をモデル化し、自然に因果関係を持つ。
GRNを正確に識別するには摂動データが必要である。
しかし、ほとんどのGRN発見法は観測データのみで動作する。
ニューラルネットワークに基づく因果発見手法の最近の進歩は、介入データの処理、パフォーマンスとスケーラビリティの改善など、因果発見を大幅に改善している。
しかし、生物に最先端(SOTA)因果探索法を適用すると、ノイズの多いデータや多数のサンプルのような課題が生じる。
したがって、これらの課題に対処するには因果発見手法を適用する必要がある。
本稿では,遺伝子の発現計測を行い,介入データを処理できるニューラルネットワークを用いたgrn探索手法であるdiscogenを提案する。
我々のモデルはSOTAニューラルネットワークに基づく因果探索法より優れていることを示す。
関連論文リスト
- Analysis of Gene Regulatory Networks from Gene Expression Using Graph Neural Networks [0.4369058206183195]
本研究では、遺伝子制御ネットワーク(GRN)のようなグラフ構造化データをモデリングするための強力なアプローチであるグラフニューラルネットワーク(GNN)の利用について検討する。
規制相互作用を正確に予測し、キーレギュレータをピンポイントするモデルの有効性は、高度な注意機構に起因している。
GNNのGRN研究への統合は、パーソナライズド医療、薬物発見、生物学的システムの把握における先駆的な発展を目標としている。
論文 参考訳(メタデータ) (2024-09-20T17:16:14Z) - Targeted Cause Discovery with Data-Driven Learning [66.86881771339145]
本稿では,観測結果から対象変数の因果変数を推定する機械学習手法を提案する。
我々は、シミュレートされたデータの教師あり学習を通じて因果関係を特定するために訓練されたニューラルネットワークを用いる。
大規模遺伝子制御ネットワークにおける因果関係の同定における本手法の有効性を実証した。
論文 参考訳(メタデータ) (2024-08-29T02:21:11Z) - Inference of dynamical gene regulatory networks from single-cell data
with physics informed neural networks [0.0]
本稿では,物理インフォームドニューラルネットワーク(PINN)を用いて,予測的,動的 GRN のパラメータを推定する方法について述べる。
具体的には, 分岐挙動を示すGRNについて検討し, 細胞分化をモデル化する。
論文 参考訳(メタデータ) (2024-01-14T21:43:10Z) - A Kernel-Based Neural Network Test for High-dimensional Sequencing Data
Analysis [0.8221435109014762]
シーケンシングデータの複雑な関連解析のための新しいカーネルベースニューラルネットワーク(KNN)テストを導入する。
KNNに基づいて、高次元遺伝データの関心の表現型との結合性を評価するために、ウォルド型試験が導入された。
論文 参考訳(メタデータ) (2023-12-05T16:06:23Z) - Causal Inference in Gene Regulatory Networks with GFlowNet: Towards
Scalability in Large Systems [87.45270862120866]
我々は、GRNにおける因果構造学習を強化する新しいフレームワークとしてSwift-DynGFNを紹介した。
具体的には、Swift-DynGFNは、並列化を高め、計算コストを下げるために、遺伝子的に独立性を利用する。
論文 参考訳(メタデータ) (2023-10-05T14:59:19Z) - DynGFN: Towards Bayesian Inference of Gene Regulatory Networks with
GFlowNets [81.75973217676986]
遺伝子調節ネットワーク(GRN)は、遺伝子発現と細胞機能を制御する遺伝子とその産物間の相互作用を記述する。
既存の方法は、チャレンジ(1)、ダイナミックスから循環構造を識別すること、あるいはチャレンジ(2)、DAGよりも複雑なベイズ後部を学習することに焦点を当てるが、両方ではない。
本稿では、RNAベロシティ技術を用いて遺伝子発現の「速度」を推定できるという事実を活用し、両方の課題に対処するアプローチを開発する。
論文 参考訳(メタデータ) (2023-02-08T16:36:40Z) - Inference of Regulatory Networks Through Temporally Sparse Data [5.495223636885796]
ゲノム工学の大きな目標は、遺伝子制御ネットワーク(GRN)の複雑な動的挙動を適切に捉えることである。
本稿では,ベイズ最適化とカーネルベースの手法を用いて,GRNのスケーラブルかつ効率的なトポロジ推定法を開発した。
論文 参考訳(メタデータ) (2022-07-21T22:48:12Z) - Convolutional generative adversarial imputation networks for
spatio-temporal missing data in storm surge simulations [86.5302150777089]
GAN(Generative Adversarial Imputation Nets)とGANベースの技術は、教師なし機械学習手法として注目されている。
提案手法を Con Conval Generative Adversarial Imputation Nets (Conv-GAIN) と呼ぶ。
論文 参考訳(メタデータ) (2021-11-03T03:50:48Z) - Deep neural networks with controlled variable selection for the
identification of putative causal genetic variants [0.43012765978447565]
本稿では,遺伝的研究のための可変選択を制御した,アンサンブルを用いた解釈可能なニューラルネットワークモデルを提案する。
本手法の利点は,(1)遺伝的変異の非線形効果を柔軟にモデル化し,統計力を向上させること,(2)誤発見率を厳格に制御するために入力層内の複数のノックオフ,(3)重みパラメータやアクティベーションの数を大幅に減らし,計算効率を向上させること,を含む。
論文 参考訳(メタデータ) (2021-09-29T20:57:48Z) - Learning Neural Causal Models with Active Interventions [83.44636110899742]
本稿では,データ生成プロセスの根底にある因果構造を素早く識別する能動的介入ターゲット機構を提案する。
本手法は,ランダムな介入ターゲティングと比較して,要求される対話回数を大幅に削減する。
シミュレーションデータから実世界のデータまで,複数のベンチマークにおいて優れた性能を示す。
論文 参考訳(メタデータ) (2021-09-06T13:10:37Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
本研究は, 類似患者のサブグループを同定し, 数発の疾患のサブタイプ予測問題に焦点を当てた。
新しいモデルを開発するためにメタラーニング技術を導入し、関連する臨床課題から共通の経験や知識を抽出する。
我々の新しいモデルは、単純だが効果的なメタ学習マシンであるPrototypeal Networkと呼ばれる、慎重に設計されたメタラーナーに基づいて構築されている。
論文 参考訳(メタデータ) (2020-09-02T02:50:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。