論文の概要: Interpretable Neural ODEs for Gene Regulatory Network Discovery under Perturbations
- arxiv url: http://arxiv.org/abs/2501.02409v2
- Date: Sat, 01 Feb 2025 05:30:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-04 16:05:43.868515
- Title: Interpretable Neural ODEs for Gene Regulatory Network Discovery under Perturbations
- Title(参考訳): 摂動下における遺伝子制御ネットワーク発見のための解釈型ニューラルネットワーク
- Authors: Zaikang Lin, Sei Chang, Aaron Zweig, Minseo Kang, Elham Azizi, David A. Knowles,
- Abstract要約: 本稿では、生物学的に有意な神経常微分方程式(ニューラル・オード)を組み込んだ新しいフレームワークであるPerturbODEを提案し、摂動下での細胞状態の軌跡をモデル化する。
シミュレーションおよび実際の過剰表現データセット間での軌道予測とGRN推論におけるPerturbODEの有効性を実証する。
- 参考スコア(独自算出の注目度): 4.34315395377214
- License:
- Abstract: Modern high-throughput biological datasets with thousands of perturbations provide the opportunity for large-scale discovery of causal graphs that represent the regulatory interactions between genes. Differentiable causal graphical models have been proposed to infer a gene regulatory network (GRN) from large scale interventional datasets, capturing the causal gene regulatory relationships from genetic perturbations. However, existing models are limited in their expressivity and scalability while failing to address the dynamic nature of biological processes such as cellular differentiation. We propose PerturbODE, a novel framework that incorporates biologically informative neural ordinary differential equations (neural ODEs) to model cell state trajectories under perturbations and derive the causal GRN from the neural ODE's parameters. We demonstrate PerturbODE's efficacy in trajectory prediction and GRN inference across simulated and real over-expression datasets.
- Abstract(参考訳): 数千もの摂動を持つ現代の高スループットの生物学的データセットは、遺伝子間の制御相互作用を表す因果グラフを大規模に発見する機会を提供する。
大規模な介入データセットから遺伝子制御ネットワーク(GRN)を推定し、遺伝的摂動から遺伝子制御関係を捉えるために、異なる因果グラフモデルが提案されている。
しかし、既存のモデルは、細胞分化のような生物学的プロセスの動的な性質に対処できない一方で、その表現性と拡張性に制限がある。
本稿では、生物学的に有意な神経常微分方程式(ニューラル・オード)を組み込んだ新しいフレームワークであるPerturbODEを提案し、摂動下での細胞状態の軌跡をモデル化し、ニューラル・オードのパラメータから因果性GRNを導出する。
シミュレーションおよび実際の過剰表現データセット間での軌道予測とGRN推論におけるPerturbODEの有効性を実証する。
関連論文リスト
- Inference of dynamical gene regulatory networks from single-cell data
with physics informed neural networks [0.0]
本稿では,物理インフォームドニューラルネットワーク(PINN)を用いて,予測的,動的 GRN のパラメータを推定する方法について述べる。
具体的には, 分岐挙動を示すGRNについて検討し, 細胞分化をモデル化する。
論文 参考訳(メタデータ) (2024-01-14T21:43:10Z) - Causal Inference in Gene Regulatory Networks with GFlowNet: Towards
Scalability in Large Systems [87.45270862120866]
我々は、GRNにおける因果構造学習を強化する新しいフレームワークとしてSwift-DynGFNを紹介した。
具体的には、Swift-DynGFNは、並列化を高め、計算コストを下げるために、遺伝子的に独立性を利用する。
論文 参考訳(メタデータ) (2023-10-05T14:59:19Z) - Dynamic Causal Explanation Based Diffusion-Variational Graph Neural
Network for Spatio-temporal Forecasting [60.03169701753824]
時間予測のための動的拡散型グラフニューラルネットワーク(DVGNN)を提案する。
提案したDVGNNモデルは最先端のアプローチよりも優れ,Root Mean Squared Errorの結果が優れている。
論文 参考訳(メタデータ) (2023-05-16T11:38:19Z) - DiscoGen: Learning to Discover Gene Regulatory Networks [30.83574314774383]
遺伝子制御ネットワーク(GRN)の正確な推論は、生物学における重要な課題である。
ニューラルネットワークに基づく因果発見手法の最近の進歩は因果発見を著しく改善している。
生物学に最先端の因果発見手法を適用することは、ノイズの多いデータや多数のサンプルのような課題を引き起こす。
本稿では、遺伝子発現の測定をノイズ化し、介入データを処理するニューラルネットワークベースのGRN発見手法であるDiscoGenを紹介する。
論文 参考訳(メタデータ) (2023-04-12T13:02:49Z) - DynGFN: Towards Bayesian Inference of Gene Regulatory Networks with
GFlowNets [81.75973217676986]
遺伝子調節ネットワーク(GRN)は、遺伝子発現と細胞機能を制御する遺伝子とその産物間の相互作用を記述する。
既存の方法は、チャレンジ(1)、ダイナミックスから循環構造を識別すること、あるいはチャレンジ(2)、DAGよりも複雑なベイズ後部を学習することに焦点を当てるが、両方ではない。
本稿では、RNAベロシティ技術を用いて遺伝子発現の「速度」を推定できるという事実を活用し、両方の課題に対処するアプローチを開発する。
論文 参考訳(メタデータ) (2023-02-08T16:36:40Z) - Inferring Gene Regulatory Neural Networks for Bacterial Decision Making
in Biofilms [4.459301404374565]
細菌細胞は環境を学習するのに用いられる様々な外部信号に敏感である。
遺伝性遺伝子制御ニューラルネットワーク(GRNN)の動作は、細胞決定を可能にする。
GRNNはバイオハイブリッドコンピューティングシステムのための計算タスクを実行できる。
論文 参考訳(メタデータ) (2023-01-10T22:07:33Z) - Granger causal inference on DAGs identifies genomic loci regulating
transcription [77.58911272503771]
GrID-Netは、DBG構造化システムにおけるGranger因果推論のためのラタグメッセージパッシングを備えたグラフニューラルネットワークに基づくフレームワークである。
我々の応用は、特定の遺伝子の調節を仲介するゲノム座を同定する単一セルマルチモーダルデータの解析である。
論文 参考訳(メタデータ) (2022-10-18T21:15:10Z) - Relation Embedding based Graph Neural Networks for Handling
Heterogeneous Graph [58.99478502486377]
我々は、同種GNNが不均一グラフを扱うのに十分な能力を持つように、シンプルで効率的なフレームワークを提案する。
具体的には、エッジ型関係と自己ループ接続の重要性を埋め込むために、関係1つのパラメータのみを使用する関係埋め込みベースのグラフニューラルネットワーク(RE-GNN)を提案する。
論文 参考訳(メタデータ) (2022-09-23T05:24:18Z) - Neural network facilitated ab initio derivation of linear formula: A
case study on formulating the relationship between DNA motifs and gene
expression [8.794181445664243]
本稿では、解釈可能なニューラルネットワークモデルに基づく新しいアプローチを用いて、シーケンスモチーフと線形式を導出するためのフレームワークを提案する。
この線形モデルは、深いニューラルネットワークモデルに匹敵する性能を持つプロモーター配列を用いて遺伝子発現レベルを予測することができることを示した。
論文 参考訳(メタデータ) (2022-08-19T22:29:30Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
本稿では,疫病予測のための新しい物理インフォームドニューラルネットワークEINNを紹介する。
メカニスティックモデルによって提供される理論的柔軟性と、AIモデルによって提供されるデータ駆動表現性の両方を活用する方法について検討する。
論文 参考訳(メタデータ) (2022-02-21T18:59:03Z) - Gene Regulatory Network Inference with Latent Force Models [1.2691047660244335]
タンパク質合成の遅延は、RNAシークエンシング時系列データから遺伝子制御ネットワーク(GRN)を構築する際に相反する効果をもたらす。
実験データに適合するメカニスティック方程式とベイズ的アプローチを組み合わせることで,翻訳遅延を組み込んだモデルを提案する。
論文 参考訳(メタデータ) (2020-10-06T09:03:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。