Canonical and Noncanonical Hamiltonian Operator Inference
- URL: http://arxiv.org/abs/2304.06262v2
- Date: Sun, 25 Jun 2023 21:58:50 GMT
- Title: Canonical and Noncanonical Hamiltonian Operator Inference
- Authors: Anthony Gruber and Irina Tezaur
- Abstract summary: A method for the nonintrusive and structure-preserving model reduction of canonical and noncanonical Hamiltonian systems is presented.
Based on the idea of operator inference, this technique is provably convergent and reduces to a straightforward linear solve given snapshot data and gray-box knowledge of the system Hamiltonian.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A method for the nonintrusive and structure-preserving model reduction of
canonical and noncanonical Hamiltonian systems is presented. Based on the idea
of operator inference, this technique is provably convergent and reduces to a
straightforward linear solve given snapshot data and gray-box knowledge of the
system Hamiltonian. Examples involving several hyperbolic partial differential
equations show that the proposed method yields reduced models which, in
addition to being accurate and stable with respect to the addition of basis
modes, preserve conserved quantities well outside the range of their training
data.
Related papers
- Structure-preserving learning for multi-symplectic PDEs [8.540823673172403]
This paper presents an energy-preserving machine learning method for inferring reduced-order models (ROMs) by exploiting the multi-symplectic form of partial differential equations (PDEs)
We prove that the proposed method satisfies spatially discrete local energy conservation and preserves the multi-symplectic conservation laws.
arXiv Detail & Related papers (2024-09-16T16:07:21Z) - Total Uncertainty Quantification in Inverse PDE Solutions Obtained with Reduced-Order Deep Learning Surrogate Models [50.90868087591973]
We propose an approximate Bayesian method for quantifying the total uncertainty in inverse PDE solutions obtained with machine learning surrogate models.
We test the proposed framework by comparing it with the iterative ensemble smoother and deep ensembling methods for a non-linear diffusion equation.
arXiv Detail & Related papers (2024-08-20T19:06:02Z) - A Structure-Preserving Kernel Method for Learning Hamiltonian Systems [3.594638299627404]
A structure-preserving kernel ridge regression method is presented that allows the recovery of potentially high-dimensional and nonlinear Hamiltonian functions.
The paper extends kernel regression methods to problems in which loss functions involving linear functions of gradients are required.
A full error analysis is conducted that provides convergence rates using fixed and adaptive regularization parameters.
arXiv Detail & Related papers (2024-03-15T07:20:21Z) - Causal Modeling with Stationary Diffusions [89.94899196106223]
We learn differential equations whose stationary densities model a system's behavior under interventions.
We show that they generalize to unseen interventions on their variables, often better than classical approaches.
Our inference method is based on a new theoretical result that expresses a stationarity condition on the diffusion's generator in a reproducing kernel Hilbert space.
arXiv Detail & Related papers (2023-10-26T14:01:17Z) - Symplectic model reduction of Hamiltonian systems using data-driven
quadratic manifolds [0.559239450391449]
We present two novel approaches for the symplectic model reduction of high-dimensional Hamiltonian systems.
The addition of quadratic terms to the state approximation, which sits at the heart of the proposed methodologies, enables us to better represent intrinsic low-dimensionality.
arXiv Detail & Related papers (2023-05-24T18:23:25Z) - Bayesian inference via sparse Hamiltonian flows [16.393322369105864]
A Bayesian coreset is a small, weighted subset of data that replaces the full dataset during Bayesian inference.
Current methods tend to be slow, require a secondary inference step after coreset construction, and do not provide bounds on the data marginal evidence.
We introduce a new method -- sparse Hamiltonian flows -- that addresses all three of these challenges.
arXiv Detail & Related papers (2022-03-11T02:36:59Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - A Variational Inference Approach to Inverse Problems with Gamma
Hyperpriors [60.489902135153415]
This paper introduces a variational iterative alternating scheme for hierarchical inverse problems with gamma hyperpriors.
The proposed variational inference approach yields accurate reconstruction, provides meaningful uncertainty quantification, and is easy to implement.
arXiv Detail & Related papers (2021-11-26T06:33:29Z) - Exact solutions of interacting dissipative systems via weak symmetries [77.34726150561087]
We analytically diagonalize the Liouvillian of a class Markovian dissipative systems with arbitrary strong interactions or nonlinearity.
This enables an exact description of the full dynamics and dissipative spectrum.
Our method is applicable to a variety of other systems, and could provide a powerful new tool for the study of complex driven-dissipative quantum systems.
arXiv Detail & Related papers (2021-09-27T17:45:42Z) - On dissipative symplectic integration with applications to
gradient-based optimization [77.34726150561087]
We propose a geometric framework in which discretizations can be realized systematically.
We show that a generalization of symplectic to nonconservative and in particular dissipative Hamiltonian systems is able to preserve rates of convergence up to a controlled error.
arXiv Detail & Related papers (2020-04-15T00:36:49Z) - Operator inference for non-intrusive model reduction of systems with
non-polynomial nonlinear terms [6.806310449963198]
This work presents a non-intrusive model reduction method to learn low-dimensional models of dynamical systems with non-polynomial nonlinear terms that are spatially local.
The proposed approach requires only the non-polynomial terms in analytic form and learns the rest of the dynamics from snapshots computed with a potentially black-box full-model solver.
The proposed method is demonstrated on three problems governed by partial differential equations, namely the diffusion-reaction Chafee-Infante model, a tubular reactor model for reactive flows, and a batch-chromatography model that describes a chemical separation process.
arXiv Detail & Related papers (2020-02-22T16:27:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.