論文の概要: Monetizing Explainable AI: A Double-edged Sword
- arxiv url: http://arxiv.org/abs/2304.06483v1
- Date: Mon, 27 Mar 2023 15:50:41 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-16 21:46:09.952326
- Title: Monetizing Explainable AI: A Double-edged Sword
- Title(参考訳): 説明可能なAIの収益化: ダブルエッジの剣
- Authors: Travis Greene, Sofie Goethals, David Martens, Galit Shmueli
- Abstract要約: 説明可能な人工知能(XAI)は、アルゴリズムによる意思決定のロジックに関する洞察を提供することを目的としている。
このトピックに関する多くの研究にもかかわらず、XAIの消費者向け応用は依然として稀である。
本稿では,説明プラットフォームを通じてプログラム広告とアルゴリズムによる説明を融合させる新たな収益化戦略について紹介する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Algorithms used by organizations increasingly wield power in society as they
decide the allocation of key resources and basic goods. In order to promote
fairer, juster, and more transparent uses of such decision-making power,
explainable artificial intelligence (XAI) aims to provide insights into the
logic of algorithmic decision-making. Despite much research on the topic,
consumer-facing applications of XAI remain rare. A central reason may be that a
viable platform-based monetization strategy for this new technology has yet to
be found. We introduce and describe a novel monetization strategy for fusing
algorithmic explanations with programmatic advertising via an explanation
platform. We claim the explanation platform represents a new,
socially-impactful, and profitable form of human-algorithm interaction and
estimate its potential for revenue generation in the high-risk domains of
finance, hiring, and education. We then consider possible undesirable and
unintended effects of monetizing XAI and simulate these scenarios using
real-world credit lending data. Ultimately, we argue that monetizing XAI may be
a double-edged sword: while monetization may incentivize industry adoption of
XAI in a variety of consumer applications, it may also conflict with the
original legal and ethical justifications for developing XAI. We conclude by
discussing whether there may be ways to responsibly and democratically harness
the potential of monetized XAI to provide greater consumer access to
algorithmic explanations.
- Abstract(参考訳): 組織が使用するアルゴリズムは、重要な資源や基本財の配分を決定するにつれて、社会における権力をますます弱めている。
このような意思決定力の公平性、公正性、透明性を高めるために、説明可能な人工知能(XAI)はアルゴリズムによる意思決定の論理に関する洞察を提供することを目指している。
このトピックに関する多くの研究にもかかわらず、XAIの消費者向け応用は依然として稀である。
主な理由は、この新技術のプラットフォームベースの収益化戦略がまだ見つからないからかもしれない。
本稿では,説明プラットフォームを通じてプログラム広告とアルゴリズムによる説明を融合させる新たな収益化戦略について紹介する。
我々は、この説明プラットフォームは、人間とアルゴリズムの相互作用の新しい、社会的にインパクトがあり、利益の出る形態を表しており、金融、雇用、教育のリスクの高い領域で収益を生み出す可能性を見積もっている。
次に、XAIの収益化による望ましくない、意図しない効果を考慮し、現実の信用貸付データを用いてこれらのシナリオをシミュレートする。
収益化は、さまざまな消費者アプリケーションにおけるxaiの業界採用のインセンティブとなるかもしれないが、xaiを開発するための元々の法的、倫理的な正当性とも相反する可能性がある。
我々は、XAIの収益化の可能性に責任を持ち、民主的に活用して、アルゴリズムの説明により多くの消費者アクセスを提供する方法があるかどうかを論じる。
関連論文リスト
- A Survey of Explainable Artificial Intelligence (XAI) in Financial Time Series Forecasting [1.2937020918620652]
eXplainable AI(XAI)の分野は、AIモデルをより理解しやすくすることを目指している。
本稿では、金融時系列を予測するXAIアプローチを分類する。
金融におけるXAIの現在の役割を包括的に把握している。
論文 参考訳(メタデータ) (2024-07-22T17:06:19Z) - Usable XAI: 10 Strategies Towards Exploiting Explainability in the LLM Era [77.174117675196]
XAIはLarge Language Models (LLM)に拡張されている
本稿では,XAIがLLMやAIシステムにどのようなメリットをもたらすかを分析する。
10の戦略を導入し、それぞれに重要なテクニックを導入し、関連する課題について議論します。
論文 参考訳(メタデータ) (2024-03-13T20:25:27Z) - A Time Series Approach to Explainability for Neural Nets with
Applications to Risk-Management and Fraud Detection [0.0]
技術に対する信頼は、予測の背後にある根拠を理解することによって実現される。
横断的なデータの場合、古典的なXAIアプローチはモデルの内部動作に関する貴重な洞察をもたらす可能性がある。
本稿では、データの自然時間順序を保存・活用する深層学習のための新しいXAI手法を提案する。
論文 参考訳(メタデータ) (2022-12-06T12:04:01Z) - Seamful XAI: Operationalizing Seamful Design in Explainable AI [59.89011292395202]
AIシステムのミスは必然的であり、技術的制限と社会技術的ギャップの両方から生じる。
本稿では, 社会工学的・インフラ的ミスマッチを明らかにすることにより, シームレスな設計がAIの説明可能性を高めることを提案する。
43人のAI実践者と実際のエンドユーザでこのプロセスを探求します。
論文 参考訳(メタデータ) (2022-11-12T21:54:05Z) - Towards Human Cognition Level-based Experiment Design for Counterfactual
Explanations (XAI) [68.8204255655161]
XAI研究の重点は、より理解を深めるために、より実践的な説明アプローチに変わったようだ。
認知科学研究がXAIの進歩に大きく影響を与える可能性のある領域は、ユーザの知識とフィードバックを評価することである。
本研究では,異なる認知レベルの理解に基づく説明の生成と評価を実験する枠組みを提案する。
論文 参考訳(メタデータ) (2022-10-31T19:20:22Z) - Regulating eXplainable Artificial Intelligence (XAI) May Harm Consumers [3.989227271669354]
一般的な知恵として、完全に透明なXAIを強制することによってAIの規制が社会福祉を増大させる。
本稿では,社会福祉を最大化する政策立案者のゲーム理論モデルを用いて,この概念に挑戦する。
必須のXAIでも保証できないXAI公正性の概念を考察する。
論文 参考訳(メタデータ) (2022-09-07T23:36:11Z) - Connecting Algorithmic Research and Usage Contexts: A Perspective of
Contextualized Evaluation for Explainable AI [65.44737844681256]
説明可能なAI(XAI)を評価する方法に関するコンセンサスの欠如は、この分野の進歩を妨げる。
このギャップを埋める一つの方法は、異なるユーザ要求を考慮に入れた評価方法を開発することである、と我々は主張する。
論文 参考訳(メタデータ) (2022-06-22T05:17:33Z) - A User-Centred Framework for Explainable Artificial Intelligence in
Human-Robot Interaction [70.11080854486953]
本稿では,XAIのソーシャル・インタラクティブな側面に着目したユーザ中心型フレームワークを提案する。
このフレームワークは、エキスパートでないユーザのために考えられた対話型XAIソリューションのための構造を提供することを目的としている。
論文 参考訳(メタデータ) (2021-09-27T09:56:23Z) - Explainable Artificial Intelligence Approaches: A Survey [0.22940141855172028]
人工知能ベースの「ブラックボックス」システム/モデルからの決定の説明力の欠如は、ハイステークアプリケーションでAIを採用するための重要な障害です。
相互ケーススタディ/タスクにより、一般的なXAI(Explainable Artificial Intelligence)手法を実証します。
競争優位性を多角的に分析します。
我々はXAIを媒体として、責任や人間中心のAIへの道を推奨する。
論文 参考訳(メタデータ) (2021-01-23T06:15:34Z) - Opportunities and Challenges in Explainable Artificial Intelligence
(XAI): A Survey [2.7086321720578623]
深層ニューラルネットワークのブラックボックスの性質は、ミッションクリティカルなアプリケーションでの利用に挑戦する。
XAIは、AI決定に関する高品質な解釈可能、直感的、人間に理解可能な説明を生成するためのツール、テクニック、アルゴリズムのセットを推進している。
論文 参考訳(メタデータ) (2020-06-16T02:58:10Z) - Learning from Learning Machines: Optimisation, Rules, and Social Norms [91.3755431537592]
経済的な実体の行動に最も類似したAIの領域は道徳的に良い意思決定の領域であるようだ。
近年のAIにおけるディープラーニングの成功は、そのような問題を解決するための明示的な仕様よりも暗黙的な仕様の方が優れていることを示唆している。
論文 参考訳(メタデータ) (2019-12-29T17:42:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。