論文の概要: Exploring the State of the Art in Legal QA Systems
- arxiv url: http://arxiv.org/abs/2304.06623v3
- Date: Fri, 15 Sep 2023 10:19:53 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-18 18:38:07.928330
- Title: Exploring the State of the Art in Legal QA Systems
- Title(参考訳): 法律qaシステムにおける技術の現状を探る
- Authors: Abdelrahman Abdallah, Bhawna Piryani, Adam Jatowt
- Abstract要約: 質問応答システム(QA)は、人間の言語で質問された質問に対する回答を生成するように設計されている。
QAには、カスタマーサービス、教育、研究、言語間コミュニケーションなど、さまざまな実践的応用がある。
法分野における質問応答のための14のベンチマークデータセットをレビューする包括的調査を提供する。
- 参考スコア(独自算出の注目度): 20.178251855026684
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Answering questions related to the legal domain is a complex task, primarily
due to the intricate nature and diverse range of legal document systems.
Providing an accurate answer to a legal query typically necessitates
specialized knowledge in the relevant domain, which makes this task all the
more challenging, even for human experts. Question answering (QA) systems are
designed to generate answers to questions asked in human languages. QA uses
natural language processing to understand questions and search through
information to find relevant answers. QA has various practical applications,
including customer service, education, research, and cross-lingual
communication. However, QA faces challenges such as improving natural language
understanding and handling complex and ambiguous questions. Answering questions
related to the legal domain is a complex task, primarily due to the intricate
nature and diverse range of legal document systems. Providing an accurate
answer to a legal query typically necessitates specialized knowledge in the
relevant domain, which makes this task all the more challenging, even for human
experts. At this time, there is a lack of surveys that discuss legal question
answering. To address this problem, we provide a comprehensive survey that
reviews 14 benchmark datasets for question-answering in the legal field as well
as presents a comprehensive review of the state-of-the-art Legal Question
Answering deep learning models. We cover the different architectures and
techniques used in these studies and the performance and limitations of these
models. Moreover, we have established a public GitHub repository where we
regularly upload the most recent articles, open data, and source code. The
repository is available at:
\url{https://github.com/abdoelsayed2016/Legal-Question-Answering-Review}.
- Abstract(参考訳): 法的領域に関する質問に対する回答は、主に複雑な性質と多種多様な法的文書システムのために複雑なタスクである。
法的クエリに対する正確な回答を提供するには、典型的には関連する分野の専門知識が必要である。
質問応答(qa)システムは、人間の言語で質問に対する回答を生成するように設計されている。
QAは自然言語処理を使用して質問を理解し、情報を通して関連する回答を見つける。
QAには、カスタマーサービス、教育、研究、言語間コミュニケーションなど、さまざまな実践的応用がある。
しかし、qaは自然言語理解の改善や複雑であいまいな質問の扱いといった課題に直面している。
法的領域に関する質問に対する回答は、主に複雑な性質と多種多様な法的文書システムのために複雑なタスクである。
法的クエリに対する正確な回答を提供するには、典型的には関連する分野の専門知識が必要である。
現時点では、法的質問に対する回答を議論する調査が不足している。
この問題を解決するために,法分野における質問応答のための14のベンチマークデータセットをレビューし,ディープラーニングモデルに対する最新の法的質問を総合的にレビューする包括的な調査を行う。
これらの研究で使用される異なるアーキテクチャとテクニック、およびこれらのモデルの性能と限界について取り上げる。
さらに、最新の記事やオープンデータ、ソースコードを定期的にアップロードするGitHubリポジトリも公開しています。
リポジトリは \url{https://github.com/abdoelsayed2016/legal-question-answering-review} で利用可能である。
関連論文リスト
- Interpretable Long-Form Legal Question Answering with
Retrieval-Augmented Large Language Models [10.834755282333589]
長文の法的問合せデータセットは、専門家によるフランス語の法的質問1,868件からなる。
実験結果から,自動評価指標について有望な性能を示した。
LLeQAは、専門家によって注釈付けされた唯一の包括的なロングフォームLQAデータセットの1つであり、重要な現実世界の問題を解決するために研究を加速するだけでなく、特殊な領域におけるNLPモデルを評価するための厳密なベンチマークとしても機能する可能性がある。
論文 参考訳(メタデータ) (2023-09-29T08:23:19Z) - ExpertQA: Expert-Curated Questions and Attributed Answers [51.68314045809179]
我々は,様々な属性と事実の軸に沿って,いくつかの代表システムからの応答を人為的に評価する。
我々は32分野にわたる484人の被験者から専門家による質問を収集し、同じ専門家に自身の質問に対する反応を評価する。
分析の結果は,32分野にまたがる2177の質問と,回答の検証とクレームの属性を備えた高品質な長文QAデータセットであるExpertQAである。
論文 参考訳(メタデータ) (2023-09-14T16:54:34Z) - Answering Ambiguous Questions with a Database of Questions, Answers, and
Revisions [95.92276099234344]
ウィキペディアから生成される曖昧な質問のデータベースを利用して、あいまいな質問に答えるための新しい最先端技術を提案する。
提案手法は,リコール対策で15%,予測出力から不明瞭な質問を評価する尺度で10%向上する。
論文 参考訳(メタデータ) (2023-08-16T20:23:16Z) - Modern Question Answering Datasets and Benchmarks: A Survey [5.026863544662493]
質問回答(QA)は、自然言語処理(NLP)の最も重要なタスクの一つである。
NLP技術を用いて、大量の非構造化コーパスに基づいて、与えられた質問に対する対応する回答を生成することを目的としている。
本稿では,ディープラーニングの時代にリリースされた,影響力あるQAデータセットについて検討する。
論文 参考訳(メタデータ) (2022-06-30T05:53:56Z) - Question Answering Survey: Directions, Challenges, Datasets, Evaluation
Matrices [0.0]
QA分野の研究の方向性は,質問の種類,回答の種類,根拠の源泉,モデリングアプローチに基づいて分析される。
これに続き、自動質問生成、類似性検出、言語に対する低リソース可用性など、この分野のオープンな課題が続きます。
論文 参考訳(メタデータ) (2021-12-07T08:53:40Z) - ConditionalQA: A Complex Reading Comprehension Dataset with Conditional
Answers [93.55268936974971]
条件付き回答を含む複雑な質問を含む質問回答データセットについて述べる。
このデータセットを ConditionalQA と呼びます。
本稿では,既存のQAモデルの多く,特に回答条件の選択において,ConditionalQAは困難であることを示す。
論文 参考訳(メタデータ) (2021-10-13T17:16:46Z) - A Dataset of Information-Seeking Questions and Answers Anchored in
Research Papers [66.11048565324468]
1,585の自然言語処理論文に関する5,049の質問のデータセットを提示する。
各質問は、対応する論文のタイトルと要約のみを読むNLP実践者によって書かれ、質問は全文に存在する情報を求めます。
他のQAタスクでうまく機能する既存のモデルは、これらの質問に答える上ではうまく機能せず、論文全体から回答する際には、少なくとも27 F1ポイントパフォーマンスが低下します。
論文 参考訳(メタデータ) (2021-05-07T00:12:34Z) - Technical Question Answering across Tasks and Domains [47.80330046038137]
文書検索と読解作業のための調整可能な共同学習手法を提案する。
TechQAに関する我々の実験は、最先端の手法と比較して優れた性能を示している。
論文 参考訳(メタデータ) (2020-10-19T18:39:30Z) - A Survey on Complex Question Answering over Knowledge Base: Recent
Advances and Challenges [71.4531144086568]
知識ベース(KB)に対する質問回答(QA)は、自然言語の質問に自動的に答えることを目的としている。
研究者は、よりKBのトリプルと制約推論を必要とする単純な質問から複雑な質問へと注意を移した。
論文 参考訳(メタデータ) (2020-07-26T07:13:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。