論文の概要: Speck: A Smart event-based Vision Sensor with a low latency 327K Neuron
Convolutional Neuronal Network Processing Pipeline
- arxiv url: http://arxiv.org/abs/2304.06793v1
- Date: Thu, 13 Apr 2023 19:28:57 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-17 15:30:04.982586
- Title: Speck: A Smart event-based Vision Sensor with a low latency 327K Neuron
Convolutional Neuronal Network Processing Pipeline
- Title(参考訳): Speck:低レイテンシ327Kニューロン畳み込みニューラルネットワーク処理パイプラインを備えたスマートイベントベース視覚センサ
- Authors: Ole Richter (1,3,4), Yannan Xing (2), Michele De Marchi (1), Carsten
Nielsen (1), Merkourios Katsimpris (1), Roberto Cattaneo (1), Yudi Ren (2),
Qian Liu (1), Sadique Sheik (1), Tugba Demirci (1,2), Ning Qiao (1,2) ((1)
SynSense AG, Swizerland, (2) SynSense, PR China, (3) Bio-Inspired Circuits
and Systems (BICS) Lab, Zernike Institute for Advanced Materials, University
of Groningen, Netherlands, (4) Groningen Cognitive Systems and Materials
Center (CogniGron), University of Groningen, Netherlands.)
- Abstract要約: チップを用いたスマートビジョンセンサシステム(Soc)
イベントベースのカメラと低消費電力の非同期スパイク Convolutional Neuronal Network (SCNN) コンピューティングアーキテクチャが1つのチップに埋め込まれている。
低遅延ビジュアル処理パイプラインは、少ないエネルギー予算とセンサーコストで小さなフォームファクタにデプロイされる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Edge computing solutions that enable the extraction of high level information
from a variety of sensors is in increasingly high demand. This is due to the
increasing number of smart devices that require sensory processing for their
application on the edge. To tackle this problem, we present a smart vision
sensor System on Chip (Soc), featuring an event-based camera and a low power
asynchronous spiking Convolutional Neuronal Network (sCNN) computing
architecture embedded on a single chip. By combining both sensor and processing
on a single die, we can lower unit production costs significantly. Moreover,
the simple end-to-end nature of the SoC facilitates small stand-alone
applications as well as functioning as an edge node in a larger systems. The
event-driven nature of the vision sensor delivers high-speed signals in a
sparse data stream. This is reflected in the processing pipeline, focuses on
optimising highly sparse computation and minimising latency for 9 sCNN layers
to $3.36\mu s$. Overall, this results in an extremely low-latency visual
processing pipeline deployed on a small form factor with a low energy budget
and sensor cost. We present the asynchronous architecture, the individual
blocks, the sCNN processing principle and benchmark against other sCNN capable
processors.
- Abstract(参考訳): さまざまなセンサからハイレベルな情報を抽出できるエッジコンピューティングソリューションは、ますます需要が高まっている。
これは、エッジ上のアプリケーションに対して感覚処理を必要とするスマートデバイスが増えているためである。
そこで本研究では,イベントベースのカメラと低消費電力の非同期スパイキング畳み込みニューラルネットワーク (scnn) コンピューティングアーキテクチャを1つのチップに組み込んだsoc(smart vision sensor system on chip)を提案する。
センサと処理を1つのダイに組み合わせることで、ユニット生産コストを大幅に削減できる。
さらに、SoCの単純なエンドツーエンドの性質は、より大規模なシステムにおいてエッジノードとして機能するだけでなく、小さなスタンドアロンアプリケーションを容易にする。
視覚センサのイベント駆動特性は、スパースデータストリームで高速な信号を提供する。
これは処理パイプラインに反映されており、高いスパース計算の最適化と9sCNN層のレイテンシの最小化に焦点を当てている。
これにより、低エネルギーの予算とセンサーコストで小さなフォームファクタ上に展開される非常に低レイテンシなビジュアル処理パイプラインが実現される。
非同期アーキテクチャ、個々のブロック、sCNN処理原理、および他のsCNN対応プロセッサに対するベンチマークを示す。
関連論文リスト
- EvGNN: An Event-driven Graph Neural Network Accelerator for Edge Vision [0.06752396542927405]
イベント駆動グラフニューラルネットワーク(GNN)は、スパースイベントベースのビジョンのための有望なソリューションとして登場した。
我々は,低フットプリント,超低レイテンシ,高精度エッジビジョンのための,最初のイベント駆動型GNNアクセラレータであるEvGNNを提案する。
論文 参考訳(メタデータ) (2024-04-30T12:18:47Z) - LitE-SNN: Designing Lightweight and Efficient Spiking Neural Network through Spatial-Temporal Compressive Network Search and Joint Optimization [48.41286573672824]
スパイキングニューラルネットワーク(SNN)は人間の脳の情報処理機構を模倣し、エネルギー効率が高い。
本稿では,空間圧縮と時間圧縮の両方を自動ネットワーク設計プロセスに組み込むLitE-SNNという新しい手法を提案する。
論文 参考訳(メタデータ) (2024-01-26T05:23:11Z) - Free-Space Optical Spiking Neural Network [0.0]
自由空間光深絞り畳み込みニューラルネットワーク(OSCNN)について紹介する。
この手法は人間の眼の計算モデルからインスピレーションを得ている。
以上の結果から,電子的ONNと比較して,レイテンシと消費電力を最小に抑えた有望な性能を示す。
論文 参考訳(メタデータ) (2023-11-08T09:41:14Z) - PixelRNN: In-pixel Recurrent Neural Networks for End-to-end-optimized
Perception with Neural Sensors [42.18718773182277]
従来の画像センサは高速フレームレートで高解像度画像をデジタル化し、さらなる処理のためにセンサーから送信する必要がある大量のデータを生成する。
我々は、純粋なバイナリ演算を用いて、センサ上の時間的特徴を符号化する効率的なリカレントニューラルネットワークアーキテクチャ、PixelRNNの処理を開発する。
PixelRNNは、従来のシステムと比較して、センサから送信されるデータ量を64倍に削減し、手ジェスチャー認識や唇読解タスクの競合精度を提供する。
論文 参考訳(メタデータ) (2023-04-11T18:16:47Z) - Optical flow estimation from event-based cameras and spiking neural
networks [0.4899818550820575]
イベントベースセンサーはスパイキングニューラルネットワーク(SNN)に最適である
教師付きトレーニング後,高密度光フロー推定が可能なU-NetライクなSNNを提案する。
分離可能な畳み込みにより、我々は、合理的に正確な光フロー推定が得られる光モデルを開発することができた。
論文 参考訳(メタデータ) (2023-02-13T16:17:54Z) - Fluid Batching: Exit-Aware Preemptive Serving of Early-Exit Neural
Networks on Edge NPUs [74.83613252825754]
スマートエコシステム(smart ecosystems)"は、スタンドアロンではなく、センセーションが同時に行われるように形成されています。
これはデバイス上の推論パラダイムを、エッジにニューラル処理ユニット(NPU)をデプロイする方向にシフトしている。
そこで本研究では,実行時のプリエンプションが到着・終了プロセスによってもたらされる動的性を考慮に入れた,新しい早期終了スケジューリングを提案する。
論文 参考訳(メタデータ) (2022-09-27T15:04:01Z) - FPGA-optimized Hardware acceleration for Spiking Neural Networks [69.49429223251178]
本研究は,画像認識タスクに適用したオフライントレーニングによるSNN用ハードウェアアクセラレータの開発について述べる。
この設計はXilinx Artix-7 FPGAをターゲットにしており、利用可能なハードウェアリソースの40%を合計で使用している。
分類時間を3桁に短縮し、ソフトウェアと比較すると精度にわずか4.5%の影響を与えている。
論文 参考訳(メタデータ) (2022-01-18T13:59:22Z) - An Adaptive Device-Edge Co-Inference Framework Based on Soft
Actor-Critic [72.35307086274912]
高次元パラメータモデルと大規模数学的計算は、特にIoT(Internet of Things)デバイスにおける実行効率を制限する。
本稿では,ソフトポリシーの繰り返しによるエフェキシット点,エフェキシット点,エンフェキシット点を生成する離散的(SAC-d)のための新しい深層強化学習(DRL)-ソフトアクタ批判法を提案する。
レイテンシと精度を意識した報酬設計に基づいて、そのような計算は動的無線チャンネルや任意の処理のような複雑な環境によく適応でき、5G URLをサポートすることができる。
論文 参考訳(メタデータ) (2022-01-09T09:31:50Z) - Hybrid SNN-ANN: Energy-Efficient Classification and Object Detection for
Event-Based Vision [64.71260357476602]
イベントベースの視覚センサは、画像フレームではなく、イベントストリームの局所的な画素単位の明るさ変化を符号化する。
イベントベースセンサーによる物体認識の最近の進歩は、ディープニューラルネットワークの変換によるものである。
本稿では、イベントベースのパターン認識とオブジェクト検出のためのディープニューラルネットワークのエンドツーエンドトレーニングのためのハイブリッドアーキテクチャを提案する。
論文 参考訳(メタデータ) (2021-12-06T23:45:58Z) - Silicon photonic subspace neural chip for hardware-efficient deep
learning [11.374005508708995]
光ニューラルネットワーク(ONN)は次世代のニューロコンピューティングの候補として期待されている。
ハードウェア効率の良いフォトニックサブスペースニューラルネットワークアーキテクチャを考案する。
我々は,バタフライ型プログラマブルシリコンフォトニック集積回路上でPSNNを実験的に実証した。
論文 参考訳(メタデータ) (2021-11-11T06:34:05Z) - Learning Frequency-aware Dynamic Network for Efficient Super-Resolution [56.98668484450857]
本稿では、離散コサイン変換(dct)領域の係数に応じて入力を複数の部分に分割する新しい周波数認識動的ネットワークについて検討する。
実際、高周波部は高価な操作で処理され、低周波部は計算負荷を軽減するために安価な操作が割り当てられる。
ベンチマークSISRモデルおよびデータセット上での実験は、周波数認識動的ネットワークが様々なSISRニューラルネットワークに使用できることを示している。
論文 参考訳(メタデータ) (2021-03-15T12:54:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。