論文の概要: Free-Space Optical Spiking Neural Network
- arxiv url: http://arxiv.org/abs/2311.04558v1
- Date: Wed, 8 Nov 2023 09:41:14 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-09 16:27:16.829578
- Title: Free-Space Optical Spiking Neural Network
- Title(参考訳): 自由空間光スパイクニューラルネットワーク
- Authors: Reyhane Ahmadi, Amirreza Ahmadnejad, Somayyeh Koohi
- Abstract要約: 自由空間光深絞り畳み込みニューラルネットワーク(OSCNN)について紹介する。
この手法は人間の眼の計算モデルからインスピレーションを得ている。
以上の結果から,電子的ONNと比較して,レイテンシと消費電力を最小に抑えた有望な性能を示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Neuromorphic engineering has emerged as a promising avenue for developing
brain-inspired computational systems. However, conventional electronic AI-based
processors often encounter challenges related to processing speed and thermal
dissipation. As an alternative, optical implementations of such processors have
been proposed, capitalizing on the intrinsic information-processing
capabilities of light. Within the realm of optical neuromorphic engineering,
various optical neural networks (ONNs) have been explored. Among these, Spiking
Neural Networks (SNNs) have exhibited notable success in emulating the
computational principles of the human brain. Nevertheless, the integration of
optical SNN processors has presented formidable obstacles, mainly when dealing
with the computational demands of large datasets. In response to these
challenges, we introduce a pioneering concept: the Free-space Optical deep
Spiking Convolutional Neural Network (OSCNN). This novel approach draws
inspiration from computational models of the human eye. We have meticulously
designed various optical components within the OSCNN to tackle object detection
tasks across prominent benchmark datasets, including MNIST, ETH 80, and
Caltech. Our results demonstrate promising performance with minimal latency and
power consumption compared to their electronic ONN counterparts. Additionally,
we conducted several pertinent simulations, such as optical intensity
to-latency conversion and synchronization. Of particular significance is the
evaluation of the feature extraction layer, employing a Gabor filter bank,
which stands to impact the practical deployment of diverse ONN architectures
significantly.
- Abstract(参考訳): ニューロモルフィックエンジニアリングは、脳にインスパイアされた計算システムを開発するための有望な道として登場した。
しかし、従来の電子aiベースのプロセッサは、しばしば処理速度や熱散逸に関する問題に遭遇する。
代替として、光の本質的な情報処理能力に乗じて、このようなプロセッサの光学的実装が提案されている。
光ニューロモルフィック工学の領域では、様々な光学ニューラルネットワーク(ONN)が研究されている。
これらのうち、スパイキングニューラルネットワーク(SNN)は人間の脳の計算原理をエミュレートすることに成功した。
それにもかかわらず、光学SNNプロセッサの統合は、主に大規模なデータセットの計算要求に対処する際の重大な障害を提示している。
これらの課題に応えて、我々は先駆的な概念であるFree-space Optical Deep Spiking Convolutional Neural Network (OSCNN)を紹介した。
この手法は人間の眼の計算モデルからインスピレーションを得ている。
我々は、MNIST、ETH 80、Caltechなどの著名なベンチマークデータセットにわたるオブジェクト検出タスクに取り組むために、OSCNN内の様々な光学部品を慎重に設計しました。
以上の結果から,電子的ONNと比較して,レイテンシと消費電力を最小に抑えた有望な性能を示す。
さらに,光強度から遅延変換,同期など,いくつかの関連するシミュレーションを行った。
特に重要なのは特徴抽出層の評価であり、Gaborフィルタバンクを用いており、多様なONNアーキテクチャの実践的展開に大きな影響を与える。
関連論文リスト
- SpikeAtConv: An Integrated Spiking-Convolutional Attention Architecture for Energy-Efficient Neuromorphic Vision Processing [11.687193535939798]
スパイキングニューラルネットワーク(SNN)は、従来の人工ニューラルネットワークに代わる生物学的にインスパイアされた代替手段を提供する。
SNNは、画像分類などの複雑な視覚的タスクにおいて、まだ競争力のある性能を達成できていない。
本研究では,有効性とタスク精度の向上を目的とした新しいSNNアーキテクチャを提案する。
論文 参考訳(メタデータ) (2024-11-26T13:57:38Z) - Neuromorphic Wireless Split Computing with Multi-Level Spikes [69.73249913506042]
ニューロモルフィックコンピューティングでは、スパイクニューラルネットワーク(SNN)が推論タスクを実行し、シーケンシャルデータを含むワークロードの大幅な効率向上を提供する。
ハードウェアとソフトウェアの最近の進歩は、スパイクニューロン間で交換された各スパイクに数ビットのペイロードを埋め込むことにより、推論精度をさらに高めることを示した。
本稿では,マルチレベルSNNを用いた無線ニューロモルフィック分割計算アーキテクチャについて検討する。
論文 参考訳(メタデータ) (2024-11-07T14:08:35Z) - Optical training of large-scale Transformers and deep neural networks with direct feedback alignment [48.90869997343841]
我々は,ハイブリッド電子フォトニックプラットフォーム上で,ダイレクトフィードバックアライメントと呼ばれる多目的でスケーラブルなトレーニングアルゴリズムを実験的に実装した。
光処理ユニットは、このアルゴリズムの中央動作である大規模ランダム行列乗算を最大1500テラOpsで行う。
我々は、ハイブリッド光アプローチの計算スケーリングについて検討し、超深度・広帯域ニューラルネットワークの潜在的な利点を実証する。
論文 参考訳(メタデータ) (2024-09-01T12:48:47Z) - Sparsity-Aware Hardware-Software Co-Design of Spiking Neural Networks: An Overview [1.0499611180329804]
スパイキングニューラルネットワーク(SNN)は、生物学的ニューラルネットワークのスパースでイベント駆動的な性質にインスパイアされ、超低消費電力人工知能の可能性を秘めている。
スパースSNNのハードウェア・ソフトウェア共同設計について検討し,スパース表現,ハードウェアアーキテクチャ,トレーニング技術がハードウェア効率に与える影響について検討する。
本研究の目的は,スパースSNNの計算的優位性をフル活用した,組込みニューロモルフィックシステムへの道筋を解明することである。
論文 参考訳(メタデータ) (2024-08-26T17:22:11Z) - 1-bit Quantized On-chip Hybrid Diffraction Neural Network Enabled by Authentic All-optical Fully-connected Architecture [4.594367761345624]
本研究では,行列乗算をDNNに組み込んだ新しいアーキテクチャであるHybrid Diffraction Neural Network(HDNN)を紹介する。
特異位相変調層と振幅変調層を用いて、トレーニングされたニューラルネットワークは、数字認識タスクにおいて96.39%と89%の顕著な精度を示した。
論文 参考訳(メタデータ) (2024-04-11T02:54:17Z) - Recent Advances in Scalable Energy-Efficient and Trustworthy Spiking
Neural networks: from Algorithms to Technology [11.479629320025673]
スパイキングニューラルネットワーク(SNN)は、幅広い信号処理アプリケーションのために、ディープニューラルネットワークの魅力的な代替品となっている。
我々は、低レイテンシとエネルギー効率のSNNを効率的に訓練し、拡張するためのアルゴリズムと最適化の進歩について述べる。
デプロイ可能なSNNシステム構築における研究の今後の可能性について論じる。
論文 参考訳(メタデータ) (2023-12-02T19:47:00Z) - A Hybrid Neural Coding Approach for Pattern Recognition with Spiking
Neural Networks [53.31941519245432]
脳にインスパイアされたスパイクニューラルネットワーク(SNN)は、パターン認識タスクを解く上で有望な能力を示している。
これらのSNNは、情報表現に一様神経コーディングを利用する同質ニューロンに基づいている。
本研究では、SNNアーキテクチャは異種符号化方式を組み込むよう、均質に設計されるべきである、と論じる。
論文 参考訳(メタデータ) (2023-05-26T02:52:12Z) - Hybrid SNN-ANN: Energy-Efficient Classification and Object Detection for
Event-Based Vision [64.71260357476602]
イベントベースの視覚センサは、画像フレームではなく、イベントストリームの局所的な画素単位の明るさ変化を符号化する。
イベントベースセンサーによる物体認識の最近の進歩は、ディープニューラルネットワークの変換によるものである。
本稿では、イベントベースのパターン認識とオブジェクト検出のためのディープニューラルネットワークのエンドツーエンドトレーニングのためのハイブリッドアーキテクチャを提案する。
論文 参考訳(メタデータ) (2021-12-06T23:45:58Z) - Ultra-Low-Power FDSOI Neural Circuits for Extreme-Edge Neuromorphic
Intelligence [2.6199663901387997]
インメモリコンピューティング 混合信号ニューロモルフィックアーキテクチャはエッジコンピューティングのセンサ処理への応用に期待できる超低消費電力のソリューションを提供する。
本稿では、FDSOI(Fully-Depleted Silicon on Insulator)統合プロセスの特徴を利用する混合信号アナログ/デジタル回路を提案する。
論文 参考訳(メタデータ) (2020-06-25T09:31:29Z) - Spiking Neural Networks Hardware Implementations and Challenges: a
Survey [53.429871539789445]
スパイキングニューラルネットワークは、ニューロンとシナプスの操作原理を模倣する認知アルゴリズムである。
スパイキングニューラルネットワークのハードウェア実装の現状について述べる。
本稿では,これらのイベント駆動アルゴリズムの特性をハードウェアレベルで活用するための戦略について論じる。
論文 参考訳(メタデータ) (2020-05-04T13:24:00Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
スパイキングニューラルネットワーク(SNN)は、時間的スパイクパターンを用いて情報を表現し、伝達する。
本稿では,情報符号化,シナプス可塑性,意思決定におけるスパイクタイミングダイナミクスの寄与について検討し,将来のDeepSNNやニューロモルフィックハードウェアシステムの設計への新たな視点を提供する。
論文 参考訳(メタデータ) (2020-03-26T11:13:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。