Estimate-Then-Optimize versus Integrated-Estimation-Optimization versus
Sample Average Approximation: A Stochastic Dominance Perspective
- URL: http://arxiv.org/abs/2304.06833v3
- Date: Mon, 7 Aug 2023 01:41:25 GMT
- Title: Estimate-Then-Optimize versus Integrated-Estimation-Optimization versus
Sample Average Approximation: A Stochastic Dominance Perspective
- Authors: Adam N. Elmachtoub, Henry Lam, Haofeng Zhang, Yunfan Zhao
- Abstract summary: We show that a reverse behavior appears when the model class is well-specified and there is sufficient data.
We also demonstrate how standard sample average approximation (SAA) performs the worst when the model class is well-specified in terms of regret.
- Score: 15.832111591654293
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In data-driven stochastic optimization, model parameters of the underlying
distribution need to be estimated from data in addition to the optimization
task. Recent literature considers integrating the estimation and optimization
processes by selecting model parameters that lead to the best empirical
objective performance. This integrated approach, which we call
integrated-estimation-optimization (IEO), can be readily shown to outperform
simple estimate-then-optimize (ETO) when the model is misspecified. In this
paper, we show that a reverse behavior appears when the model class is
well-specified and there is sufficient data. Specifically, for a general class
of nonlinear stochastic optimization problems, we show that simple ETO
outperforms IEO asymptotically when the model class covers the ground truth, in
the strong sense of stochastic dominance of the regret. Namely, the entire
distribution of the regret, not only its mean or other moments, is always
better for ETO compared to IEO. Our results also apply to constrained,
contextual optimization problems where the decision depends on observed
features. Whenever applicable, we also demonstrate how standard sample average
approximation (SAA) performs the worst when the model class is well-specified
in terms of regret, and best when it is misspecified. Finally, we provide
experimental results to support our theoretical comparisons and illustrate when
our insights hold in finite-sample regimes and under various degrees of
misspecification.
Related papers
- A Gradient Analysis Framework for Rewarding Good and Penalizing Bad Examples in Language Models [63.949883238901414]
We present a unique angle of gradient analysis of loss functions that simultaneously reward good examples and penalize bad ones in LMs.
We find that ExMATE serves as a superior surrogate for MLE, and that combining DPO with ExMATE instead of MLE further enhances both the statistical (5-7%) and generative (+18% win rate) performance.
arXiv Detail & Related papers (2024-08-29T17:46:18Z) - Distributionally Robust Optimization as a Scalable Framework to Characterize Extreme Value Distributions [22.765095010254118]
The goal of this paper is to develop distributionally robust optimization (DRO) estimators, specifically for multidimensional Extreme Value Theory (EVT) statistics.
In order to mitigate over-conservative estimates while enhancing out-of-sample performance, we study DRO estimators informed by semi-parametric max-stable constraints in the space of point processes.
Both approaches are validated using synthetically generated data, recovering prescribed characteristics, and verifying the efficacy of the proposed techniques.
arXiv Detail & Related papers (2024-07-31T19:45:27Z) - Soft Preference Optimization: Aligning Language Models to Expert Distributions [40.84391304598521]
SPO is a method for aligning generative models, such as Large Language Models (LLMs), with human preferences.
SPO integrates preference loss with a regularization term across the model's entire output distribution.
We showcase SPO's methodology, its theoretical foundation, and its comparative advantages in simplicity, computational efficiency, and alignment precision.
arXiv Detail & Related papers (2024-04-30T19:48:55Z) - Efficient adjustment for complex covariates: Gaining efficiency with
DOPE [56.537164957672715]
We propose a framework that accommodates adjustment for any subset of information expressed by the covariates.
Based on our theoretical results, we propose the Debiased Outcome-adapted Propensity Estorimator (DOPE) for efficient estimation of the average treatment effect (ATE)
Our results show that the DOPE provides an efficient and robust methodology for ATE estimation in various observational settings.
arXiv Detail & Related papers (2024-02-20T13:02:51Z) - End-to-End Learning for Fair Multiobjective Optimization Under
Uncertainty [55.04219793298687]
The Predict-Then-Forecast (PtO) paradigm in machine learning aims to maximize downstream decision quality.
This paper extends the PtO methodology to optimization problems with nondifferentiable Ordered Weighted Averaging (OWA) objectives.
It shows how optimization of OWA functions can be effectively integrated with parametric prediction for fair and robust optimization under uncertainty.
arXiv Detail & Related papers (2024-02-12T16:33:35Z) - Bayesian Nonparametrics Meets Data-Driven Distributionally Robust Optimization [29.24821214671497]
Training machine learning and statistical models often involve optimizing a data-driven risk criterion.
We propose a novel robust criterion by combining insights from Bayesian nonparametric (i.e., Dirichlet process) theory and a recent decision-theoretic model of smooth ambiguity-averse preferences.
For practical implementation, we propose and study tractable approximations of the criterion based on well-known Dirichlet process representations.
arXiv Detail & Related papers (2024-01-28T21:19:15Z) - Self-Supervised Dataset Distillation for Transfer Learning [77.4714995131992]
We propose a novel problem of distilling an unlabeled dataset into a set of small synthetic samples for efficient self-supervised learning (SSL)
We first prove that a gradient of synthetic samples with respect to a SSL objective in naive bilevel optimization is textitbiased due to randomness originating from data augmentations or masking.
We empirically validate the effectiveness of our method on various applications involving transfer learning.
arXiv Detail & Related papers (2023-10-10T10:48:52Z) - Optimizer's Information Criterion: Dissecting and Correcting Bias in Data-Driven Optimization [16.57676001669012]
In data-driven optimization, the sample performance of the obtained decision typically incurs an optimistic bias against the true performance.
Common techniques to correct this bias, such as cross-validation, require repeatedly solving additional optimization problems and are therefore expensive.
We develop a general bias correction approach that directly approximates the first-order bias and does not require solving any additional optimization problems.
arXiv Detail & Related papers (2023-06-16T07:07:58Z) - Optimization of Annealed Importance Sampling Hyperparameters [77.34726150561087]
Annealed Importance Sampling (AIS) is a popular algorithm used to estimates the intractable marginal likelihood of deep generative models.
We present a parameteric AIS process with flexible intermediary distributions and optimize the bridging distributions to use fewer number of steps for sampling.
We assess the performance of our optimized AIS for marginal likelihood estimation of deep generative models and compare it to other estimators.
arXiv Detail & Related papers (2022-09-27T07:58:25Z) - Integrated Conditional Estimation-Optimization [6.037383467521294]
Many real-world optimization problems uncertain parameters with probability can be estimated using contextual feature information.
In contrast to the standard approach of estimating the distribution of uncertain parameters, we propose an integrated conditional estimation approach.
We show that our ICEO approach is theally consistent under moderate conditions.
arXiv Detail & Related papers (2021-10-24T04:49:35Z) - Fast Rates for Contextual Linear Optimization [52.39202699484225]
We show that a naive plug-in approach achieves regret convergence rates that are significantly faster than methods that directly optimize downstream decision performance.
Our results are overall positive for practice: predictive models are easy and fast to train using existing tools, simple to interpret, and, as we show, lead to decisions that perform very well.
arXiv Detail & Related papers (2020-11-05T18:43:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.