論文の概要: Perceptual Quality Assessment of Face Video Compression: A Benchmark and
An Effective Method
- arxiv url: http://arxiv.org/abs/2304.07056v1
- Date: Fri, 14 Apr 2023 11:26:09 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-17 13:57:09.539227
- Title: Perceptual Quality Assessment of Face Video Compression: A Benchmark and
An Effective Method
- Title(参考訳): 顔映像圧縮の知覚的品質評価 : ベンチマークと効果的な方法
- Authors: Yixuan Li, Bolin Chen, Baoliang Chen, Meng Wang, Shiqi Wang
- Abstract要約: 生成的符号化アプローチは、合理的な速度歪曲トレードオフを持つ有望な代替手段として認識されている。
従来のハイブリッドコーディングフレームワークから生成モデルまで、空間的・時間的領域における歪みの多様さは、圧縮顔画像品質評価(VQA)における大きな課題を提示する。
大規模圧縮顔画像品質評価(CFVQA)データベースを導入し,顔ビデオの知覚的品質と多角化圧縮歪みを体系的に理解するための最初の試みである。
- 参考スコア(独自算出の注目度): 40.8848376987489
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent years have witnessed an exponential increase in the demand for face
video compression, and the success of artificial intelligence has expanded the
boundaries beyond traditional hybrid video coding. Generative coding approaches
have been identified as promising alternatives with reasonable perceptual
rate-distortion trade-offs, leveraging the statistical priors of face videos.
However, the great diversity of distortion types in spatial and temporal
domains, ranging from the traditional hybrid coding frameworks to generative
models, present grand challenges in compressed face video quality assessment
(VQA). In this paper, we introduce the large-scale Compressed Face Video
Quality Assessment (CFVQA) database, which is the first attempt to
systematically understand the perceptual quality and diversified compression
distortions in face videos. The database contains 3,240 compressed face video
clips in multiple compression levels, which are derived from 135 source videos
with diversified content using six representative video codecs, including two
traditional methods based on hybrid coding frameworks, two end-to-end methods,
and two generative methods. In addition, a FAce VideO IntegeRity (FAVOR) index
for face video compression was developed to measure the perceptual quality,
considering the distinct content characteristics and temporal priors of the
face videos. Experimental results exhibit its superior performance on the
proposed CFVQA dataset. The benchmark is now made publicly available at:
https://github.com/Yixuan423/Compressed-Face-Videos-Quality-Assessment.
- Abstract(参考訳): 近年、顔画像圧縮の需要が急激に増加し、人工知能の成功により、従来のハイブリッドビデオ符号化を超えて境界が拡大している。
生成的符号化アプローチは、顔ビデオの統計的先行性を利用して、合理的な知覚的レート歪みトレードオフを持つ有望な代替手段として認識されている。
しかしながら、伝統的なハイブリッドコーディングフレームワークから生成モデルまで、空間的および時間的領域における歪みタイプの大きな多様性は、vqa(compressed face video quality assessment)において大きな課題となっている。
本稿では,顔映像の知覚的品質と多角的圧縮歪みを体系的に理解する最初の試みである,cfvqaデータベースについて述べる。
このデータベースは3,240個の圧縮された顔ビデオクリップを複数の圧縮レベルに収めており、これは6つの代表ビデオコーデックを用いた135個のソースビデオから派生したもので、その中にはハイブリッドコーディングフレームワークに基づく2つの伝統的な方法、2つのエンドツーエンドメソッド、2つの生成方法が含まれる。
さらに,顔映像のコンテンツ特性と時間的先行性を考慮して,顔映像圧縮のためのFACE VideO IntegeRity(FAVOR)指標を開発した。
実験の結果,提案したCFVQAデータセットよりも優れた性能を示した。
ベンチマークは現在、https://github.com/Yixuan423/Compressed-Face-Videos-Quality-Assessmentで公開されている。
関連論文リスト
- Efficient Video Face Enhancement with Enhanced Spatial-Temporal Consistency [36.939731355462264]
本研究では,新規で効率的なブラインド・ビデオ・フェース・エンハンスメント法を提案する。
圧縮された低品質バージョンから、効率的なデフリック機構で高品質の動画を復元する。
VFHQ-Testデータセットで行った実験は、我々の手法が現在の最先端のブラインド・フェイス・ビデオの復元と、効率と有効性の両面での解フリック法を超越していることを示している。
論文 参考訳(メタデータ) (2024-11-25T15:14:36Z) - Prediction and Reference Quality Adaptation for Learned Video Compression [54.58691829087094]
本研究では,空間的およびチャネル的予測品質差の明確な識別を行うために,信頼度に基づく予測品質適応(PQA)モジュールを提案する。
また、参照品質適応(RQA)モジュールと関連する繰り返し学習戦略を提案し、様々な参照品質のための動的空間変化フィルタを提供する。
論文 参考訳(メタデータ) (2024-06-20T09:03:26Z) - Compression-Realized Deep Structural Network for Video Quality Enhancement [78.13020206633524]
本稿では,圧縮ビデオの品質向上の課題に焦点をあてる。
既存の手法のほとんどは、圧縮コーデック内での事前処理を最適に活用するための構造設計を欠いている。
新しいパラダイムは、より意識的な品質向上プロセスのために緊急に必要である。
論文 参考訳(メタデータ) (2024-05-10T09:18:17Z) - Perceptual Quality Improvement in Videoconferencing using
Keyframes-based GAN [28.773037051085318]
本稿では,ビデオ会議における圧縮アーティファクト削減のための新しいGAN手法を提案する。
まず,圧縮および参照フレームからマルチスケールの特徴を抽出する。
そして、私たちのアーキテクチャは、顔のランドマークに従って、これらの特徴を段階的に組み合わせます。
論文 参考訳(メタデータ) (2023-11-07T16:38:23Z) - High Visual-Fidelity Learned Video Compression [6.609832462227998]
我々は,HVFVC(High Visual-Fidelity Learned Video Compression framework)を提案する。
具体的には,新たに出現した地域での貧弱な復興問題に対処するために,信頼度に基づく新しい特徴再構成手法を設計する。
広汎な実験により提案したHVFVCは、50%しか必要とせず、最新のVVC標準よりも優れた知覚品質が得られることが示された。
論文 参考訳(メタデータ) (2023-10-07T03:27:45Z) - Learned Video Compression via Heterogeneous Deformable Compensation
Network [78.72508633457392]
不安定な圧縮性能の問題に対処するために,不均一変形補償戦略(HDCVC)を用いた学習ビデオ圧縮フレームワークを提案する。
より具体的には、提案アルゴリズムは隣接する2つのフレームから特徴を抽出し、コンテンツ近傍の不均一な変形(HetDeform)カーネルオフセットを推定する。
実験結果から,HDCVCは最近の最先端の学習ビデオ圧縮手法よりも優れた性能を示した。
論文 参考訳(メタデータ) (2022-07-11T02:31:31Z) - Neural Weight Step Video Compression [0.5772546394254112]
本稿では,2つのアーキテクチャのパラダイムを用いて,映像圧縮の実現可能性をテストするための一連の実験を提案する。
ビデオのフレームを低エントロピーパラメータ更新として符号化する手法を提案する。
提案手法の有効性を評価するため,複数の高解像度映像データセット上で映像圧縮性能をテストする。
論文 参考訳(メタデータ) (2021-12-02T18:53:05Z) - Perceptual Learned Video Compression with Recurrent Conditional GAN [158.0726042755]
本稿では, PVC (Perceptual Learned Video Compression) アプローチを提案する。
PLVCは低ビットレートで映像を知覚品質に圧縮することを学ぶ。
ユーザスタディでは、最新の学習ビデオ圧縮手法と比較して、PLVCの優れた知覚性能をさらに検証している。
論文 参考訳(メタデータ) (2021-09-07T13:36:57Z) - COMISR: Compression-Informed Video Super-Resolution [76.94152284740858]
ウェブやモバイルデバイスのほとんどのビデオは圧縮され、帯域幅が制限されると圧縮は厳しい。
圧縮によるアーティファクトを導入せずに高解像度コンテンツを復元する圧縮インフォームドビデオ超解像モデルを提案する。
論文 参考訳(メタデータ) (2021-05-04T01:24:44Z) - Feedback Recurrent Autoencoder for Video Compression [14.072596106425072]
低レイテンシモードで動作する学習ビデオ圧縮のための新しいネットワークアーキテクチャを提案する。
提案手法は,高分解能UVGデータセット上でのMS-SSIM/レート性能を示す。
論文 参考訳(メタデータ) (2020-04-09T02:58:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。