論文の概要: Supervised Machine Learning for Breast Cancer Risk Factors Analysis and
Survival Prediction
- arxiv url: http://arxiv.org/abs/2304.07299v1
- Date: Thu, 13 Apr 2023 12:32:14 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-18 19:49:55.747878
- Title: Supervised Machine Learning for Breast Cancer Risk Factors Analysis and
Survival Prediction
- Title(参考訳): 乳がんリスク因子分析と生存予測のための教師付き機械学習
- Authors: Khaoula Chtouki, Maryem Rhanoui, Mounia Mikram, Kamelia Amazian, Siham
Yousfi
- Abstract要約: 最も効果的な治療法の選択は、最終的には乳がん生存予測に影響されるかもしれない。
本研究では,1904年の患者記録を用いて5年間の乳癌生存を機械学習を用いて予測した。
- 参考スコア(独自算出の注目度): 0.5249805590164902
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The choice of the most effective treatment may eventually be influenced by
breast cancer survival prediction. To predict the chances of a patient
surviving, a variety of techniques were employed, such as statistical, machine
learning, and deep learning models. In the current study, 1904 patient records
from the METABRIC dataset were utilized to predict a 5-year breast cancer
survival using a machine learning approach. In this study, we compare the
outcomes of seven classification models to evaluate how well they perform using
the following metrics: recall, AUC, confusion matrix, accuracy, precision,
false positive rate, and true positive rate. The findings demonstrate that the
classifiers for Logistic Regression (LR), Support Vector Machines (SVM),
Decision Tree (DT), Random Forest (RD), Extremely Randomized Trees (ET),
K-Nearest Neighbor (KNN), and Adaptive Boosting (AdaBoost) can accurately
predict the survival rate of the tested samples, which is 75,4\%, 74,7\%,
71,5\%, 75,5\%, 70,3\%, and 78 percent.
- Abstract(参考訳): 最も効果的な治療法の選択は、最終的に乳癌の生存予測に影響される可能性がある。
患者が生存する確率を予測するために、統計学、機械学習、ディープラーニングモデルなど様々な手法が採用された。
本研究は,METABRICデータセットから得られた1904年の患者記録を用いて,機械学習を用いた5年間の乳癌生存率の予測を行った。
本研究では、7つの分類モデルの結果を比較し、リコール、AUC、混乱行列、精度、精度、偽陽性率、真正率の指標を用いて、それらがどれだけうまく機能するかを評価する。
その結果,ロジスティック回帰 (LR), サポートベクターマシン (SVM), 決定木 (DT), ランダムフォレスト (RD), 極端ランダム化木 (ET), K-Nearest Neighbor (KNN), 適応ブースティング (AdaBoost), 適応ブースティング (AdaBoost) の分類器は, 試験試料の生存率を, 75,4\%, 74,7\%, 71,5\%, 75,5\%, 70,3\%, 78パーセントを正確に予測できることがわかった。
関連論文リスト
- Improving Breast Cancer Grade Prediction with Multiparametric MRI Created Using Optimized Synthetic Correlated Diffusion Imaging [71.91773485443125]
乳がん治療計画において、グレーディングは重要な役割を担っている。
現在の腫瘍グレード法では、患者から組織を抽出し、ストレス、不快感、医療費の上昇につながる。
本稿では,CDI$s$の最適化による乳癌の診断精度の向上について検討する。
論文 参考訳(メタデータ) (2024-05-13T15:48:26Z) - Using Pre-training and Interaction Modeling for ancestry-specific disease prediction in UK Biobank [69.90493129893112]
近年のゲノムワイド・アソシエーション(GWAS)研究は、複雑な形質の遺伝的基盤を明らかにしているが、非ヨーロッパ系個体の低発現を示している。
そこで本研究では,マルチオミクスデータを用いて,多様な祖先間での疾患予測を改善することができるかを評価する。
論文 参考訳(メタデータ) (2024-04-26T16:39:50Z) - Predictive Modeling for Breast Cancer Classification in the Context of Bangladeshi Patients: A Supervised Machine Learning Approach with Explainable AI [0.0]
5種類の機械学習手法の分類精度,精度,リコール,F-1スコアを評価し,比較した。
XGBoostは97%という最高のモデル精度を達成した。
論文 参考訳(メタデータ) (2024-04-06T17:23:21Z) - Artificial Intelligence (AI) Based Prediction of Mortality, for COVID-19 Patients [0.0]
重篤な新型コロナウイルス患者に対しては、高リスク患者を特定し、生存とICU(ICU)の必要性を予測することが重要である。
本研究では,9つの機械学習アルゴリズムと2つの広く使われている特徴選択法を組み合わせたディープラーニングアルゴリズムの性能について検討した。
LSTMは最終状態とICU要件を90%, 92%, 86%, 95%の精度, 感度, 特異度, AUCで予測した。
論文 参考訳(メタデータ) (2024-03-28T12:11:29Z) - SurvRNC: Learning Ordered Representations for Survival Prediction using Rank-N-Contrast [4.5445892770974154]
Survival Rank-N Contrast (SurvRNC) は、生存時間に基づいて順序付けられた表現を得るための正規化器としての損失関数である。
訓練にSurvRNC法を用いることで,異なる深層生存モデルにおいて高い性能が得られることを示す。
論文 参考訳(メタデータ) (2024-03-15T18:00:11Z) - Improving Cardiovascular Disease Prediction Through Comparative Analysis
of Machine Learning Models: A Case Study on Myocardial Infarction [0.0]
心臓血管疾患は現代世界でも主要な死因である。
正確な予測は、医療戦略の精査に欠かせない。
XGBoostがトップパフォーマンスモデルとして登場します。
論文 参考訳(メタデータ) (2023-11-01T13:41:44Z) - Analysis and Evaluation of Explainable Artificial Intelligence on
Suicide Risk Assessment [32.04382293817763]
本研究では,自殺リスク予測における説明可能な人工知能(XAI)技術の有効性について検討した。
データ拡張技術とMLモデルは、関連するリスクを予測するために使用される。
高い収入、高い職業、大学教育を持つ患者は、最もリスクが低い。
論文 参考訳(メタデータ) (2023-03-09T05:11:46Z) - Machine Learning-Assisted Recurrence Prediction for Early-Stage
Non-Small-Cell Lung Cancer Patients [10.127130900852405]
再発リスクによるがん患者の成層化は、自身のケアをパーソナライズすることができる。
本研究では,早期非小細胞肺癌患者の再発確率を機械学習を用いて推定する方法を提案する。
論文 参考訳(メタデータ) (2022-11-17T19:34:16Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
本稿では,新しいコントラスト型正規化臨床分類モデルを提案する。
EHRデータに特化した2つのユニークなポジティブサンプリング戦略を紹介します。
私たちのフレームワークは、現実世界のCOVID-19 EHRデータの死亡リスクを予測するために、競争の激しい実験結果をもたらします。
論文 参考訳(メタデータ) (2021-04-07T06:02:04Z) - COVID-19 Prognosis via Self-Supervised Representation Learning and
Multi-Image Prediction [32.91440827855392]
胸部X線に基づいて2種類の患者の劣化を予測するタスクを検討する。
新型コロナウイルス(covid-19)患者のデータが少ないため、既存のソリューションは、関連しない画像で教師付き事前トレーニングを利用する。
本論文では,前訓練段階における運動量コントラスト(MoCo)法に基づく自己監督学習を用いて,下流タスクに用いる一般的な画像表現を学習する。
論文 参考訳(メタデータ) (2021-01-13T07:03:17Z) - Joint Prediction and Time Estimation of COVID-19 Developing Severe
Symptoms using Chest CT Scan [49.209225484926634]
術後に重篤な症状を発症するかどうかを判定するための共同分類法と回帰法を提案する。
提案手法は,各試料の重量を考慮し,外乱の影響を低減し,不均衡な分類の問題を検討する。
提案手法では, 重症症例の予測精度76.97%, 相関係数0.524, 変換時間0.55日差が得られた。
論文 参考訳(メタデータ) (2020-05-07T12:16:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。