論文の概要: Artificial Intelligence (AI) Based Prediction of Mortality, for COVID-19 Patients
- arxiv url: http://arxiv.org/abs/2403.19355v1
- Date: Thu, 28 Mar 2024 12:11:29 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-29 16:24:00.687693
- Title: Artificial Intelligence (AI) Based Prediction of Mortality, for COVID-19 Patients
- Title(参考訳): 人工知能による新型コロナウイルス患者の死亡予測
- Authors: Mahbubunnabi Tamala, Mohammad Marufur Rahmanb, Maryam Alhasimc, Mobarak Al Mulhimd, Mohamed Derichee,
- Abstract要約: 重篤な新型コロナウイルス患者に対しては、高リスク患者を特定し、生存とICU(ICU)の必要性を予測することが重要である。
本研究では,9つの機械学習アルゴリズムと2つの広く使われている特徴選択法を組み合わせたディープラーニングアルゴリズムの性能について検討した。
LSTMは最終状態とICU要件を90%, 92%, 86%, 95%の精度, 感度, 特異度, AUCで予測した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: For severely affected COVID-19 patients, it is crucial to identify high-risk patients and predict survival and need for intensive care (ICU). Most of the proposed models are not well reported making them less reproducible and prone to high risk of bias particularly in presence of imbalance data/class. In this study, the performances of nine machine and deep learning algorithms in combination with two widely used feature selection methods were investigated to predict last status representing mortality, ICU requirement, and ventilation days. Fivefold cross-validation was used for training and validation purposes. To minimize bias, the training and testing sets were split maintaining similar distributions. Only 10 out of 122 features were found to be useful in prediction modelling with Acute kidney injury during hospitalization feature being the most important one. The algorithms performances depend on feature numbers and data pre-processing techniques. LSTM performs the best in predicting last status and ICU requirement with 90%, 92%, 86% and 95% accuracy, sensitivity, specificity, and AUC respectively. DNN performs the best in predicting Ventilation days with 88% accuracy. Considering all the factors and limitations including absence of exact time point of clinical onset, LSTM with carefully selected features can accurately predict last status and ICU requirement. DNN performs the best in predicting Ventilation days. Appropriate machine learning algorithm with carefully selected features and balance data can accurately predict mortality, ICU requirement and ventilation support. Such model can be very useful in emergency and pandemic where prompt and precise
- Abstract(参考訳): 重篤な新型コロナウイルス患者に対しては、リスクの高い患者を特定し、生存と集中治療の必要性を予測することが重要である。
提案したモデルの多くはよく報告されていないため再現性が低く、特に不均衡なデータ/クラスが存在する場合のバイアスのリスクが高い。
本研究では,9つの機械学習アルゴリズムと2つの特徴選択法を組み合わせて,死亡率,ICU要件,換気日数を予測した。
5倍のクロスバリデーションがトレーニングと検証に使用された。
バイアスを最小限にするため、トレーニングセットとテストセットは、同様の分布を維持するために分割された。
122例中10例が入院時の急性腎傷害の予測に有用であった。
アルゴリズムの性能は特徴数とデータ前処理技術に依存する。
LSTMは、90%、92%、86%、95%の精度、感度、特異度、AUCで最終状態を予測するのに最適である。
DNNは88%の精度で換気日を予測するのに最善を尽くしている。
臨床発症の正確な時間点の欠如を含むすべての要因と限界を考慮すると、慎重に選択されたLSTMは、最終状態とICU要件を正確に予測することができる。
DNNは換気日を予測するのに最善を尽くしている。
慎重に選択された特徴とバランスデータを持つ適切な機械学習アルゴリズムは、死亡率、ICU要件、換気サポートを正確に予測することができる。
このようなモデルは、迅速かつ正確な緊急事態やパンデミックにおいて非常に有用である
関連論文リスト
- SepsisLab: Early Sepsis Prediction with Uncertainty Quantification and Active Sensing [67.8991481023825]
セプシスは米国での院内死亡の主な原因である。
既存の予測モデルは通常、情報不足の少ない高品質なデータで訓練される。
限られた観察により信頼性の低い高リスク患者に対して,ロバストな能動センシングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-07-24T04:47:36Z) - MedLens: Improve Mortality Prediction Via Medical Signs Selecting and
Regression [4.43322868663347]
データ品質の問題については文献では議論されていない。
我々はMEDLENSを設計し、統計による自動バイタルメディカルサイン選択手法と、高損失率時系列に対する柔軟なアプローチを用いて設計した。
精度は 0.96 AUC-ROC と 0.81 AUC-PR で、これは以前のベンチマークを超えている。
論文 参考訳(メタデータ) (2023-05-19T15:28:02Z) - Using Deep Learning-based Features Extracted from CT scans to Predict
Outcomes in COVID-19 Patients [0.4841303207359715]
Computed Tomography(CT)スキャンとElectronic Health Record(EHR)データから抽出したマルチモーダル特徴を組み合わせた新しい手法を提案する。
深層学習モデルを用いてCTスキャンから定量的特徴を抽出する。
これらの特徴と、EHRデータベースから直接読み込まれるものを組み合わせることで、マシンラーニングモデルに入力され、最終的には患者の結果の確率が出力される。
論文 参考訳(メタデータ) (2022-05-10T16:22:16Z) - Survival Prediction of Children Undergoing Hematopoietic Stem Cell
Transplantation Using Different Machine Learning Classifiers by Performing
Chi-squared Test and Hyper-parameter Optimization: A Retrospective Analysis [4.067706269490143]
効率的な生存率分類モデルが包括的に提示される。
欠落した値を入力し、ダミー変数符号化を用いてデータを変換し、チ二乗特徴選択を用いて59個の特徴から11個の最も相関した特徴にデータセットを圧縮することにより、合成データセットを生成する。
この点に関しては、決定木(Decision Tree)、ランダムフォレスト(Random Forest)、ロジスティック回帰(Logistic Regression)、K-Nearest Neighbors(K-Nearest Neighbors)、グラディエントブースティング(Gradient Boosting)、Ada Boost(Ada Boost)、XG Boost(XG Boost)など、いくつかの教師付きML手法が訓練された。
論文 参考訳(メタデータ) (2022-01-22T08:01:22Z) - SOUL: An Energy-Efficient Unsupervised Online Learning Seizure Detection
Classifier [68.8204255655161]
神経活動を記録して発作を検出するインプラントデバイスは、発作を抑えるために警告を発したり神経刺激を誘発したりするために採用されている。
移植可能な発作検出システムでは、低出力で最先端のオンライン学習アルゴリズムを使用して、神経信号のドリフトに動的に適応することができる。
SOULはTSMCの28nmプロセスで0.1mm2を占め、1.5nJ/分級エネルギー効率を実現した。
論文 参考訳(メタデータ) (2021-10-01T23:01:20Z) - An End-to-End Deep Learning Approach for Epileptic Seizure Prediction [4.094649684498489]
畳み込みニューラルネットワーク(CNN)を用いたエンドツーエンドディープラーニングソリューションを提案する。
総合感度、誤予測率、受信機動作特性曲線下の面積は、それぞれ2つのデータセットで93.5%、0.063/h、0.981、98.8%、0.074/h、0.988に達する。
論文 参考訳(メタデータ) (2021-08-17T05:49:43Z) - A Knowledge Distillation Ensemble Framework for Predicting Short and
Long-term Hospitalisation Outcomes from Electronic Health Records Data [5.844828229178025]
既存の結果予測モデルは、頻繁なポジティブな結果の低いリコールに悩まされる。
我々は、死亡率とICUの受け入れによって表される逆さを自動的に予測する、高度にスケーリング可能な、堅牢な機械学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-11-18T15:56:28Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
我々はUNcertaInTyベースのhEalth Risk Prediction(UNITE)モデルを提案する。
UNITEは、複数ソースの健康データを活用した正確な疾患リスク予測と不確実性推定を提供する。
非アルコール性脂肪肝疾患(NASH)とアルツハイマー病(AD)の実態予測タスクにおけるUNITEの評価を行った。
UNITEはAD検出のF1スコアで最大0.841点、NASH検出のPR-AUCで最大0.609点を達成し、最高のベースラインで最大19%の高パフォーマンスを達成している。
論文 参考訳(メタデータ) (2020-10-22T02:28:11Z) - CovidDeep: SARS-CoV-2/COVID-19 Test Based on Wearable Medical Sensors
and Efficient Neural Networks [51.589769497681175]
新型コロナウイルス(SARS-CoV-2)がパンデミックを引き起こしている。
SARS-CoV-2の逆転写-ポリメラーゼ連鎖反応に基づく現在の試験体制は、試験要求に追いついていない。
我々は,効率的なDNNと市販のWMSを組み合わせたCovidDeepというフレームワークを提案する。
論文 参考訳(メタデータ) (2020-07-20T21:47:28Z) - Hemogram Data as a Tool for Decision-making in COVID-19 Management:
Applications to Resource Scarcity Scenarios [62.997667081978825]
新型コロナウイルス(COVID-19)のパンデミックは世界中の緊急対応システムに挑戦している。
本研究は, 症状患者の血液検査データから得られた機械学習モデルについて述べる。
提案されたモデルでは、新型コロナウイルスqRT-PCRの結果を、高い精度、感度、特異性で症状のある個人に予測することができる。
論文 参考訳(メタデータ) (2020-05-10T01:45:03Z) - Self-Training with Improved Regularization for Sample-Efficient Chest
X-Ray Classification [80.00316465793702]
挑戦的なシナリオで堅牢なモデリングを可能にするディープラーニングフレームワークを提案する。
その結果,85%のラベル付きデータを用いて,大規模データ設定で学習した分類器の性能に適合する予測モデルを構築することができた。
論文 参考訳(メタデータ) (2020-05-03T02:36:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。