論文の概要: Tackling Small Sample Survival Analysis via Transfer Learning: A Study of Colorectal Cancer Prognosis
- arxiv url: http://arxiv.org/abs/2501.12421v1
- Date: Tue, 21 Jan 2025 08:52:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-23 16:53:06.037070
- Title: Tackling Small Sample Survival Analysis via Transfer Learning: A Study of Colorectal Cancer Prognosis
- Title(参考訳): 転移学習による小症例生存分析の試み : 大腸癌予後の検討
- Authors: Yonghao Zhao, Changtao Li, Chi Shu, Qingbin Wu, Hong Li, Chuan Xu, Tianrui Li, Ziqiang Wang, Zhipeng Luo, Yazhou He,
- Abstract要約: 本研究は,移動学習を利用した小サンプル生存分析を取り扱う。
本研究では, 共通生存モデルのための様々な移動学習手法を提案する。
データで50まで訓練されたすべてのモデルは、さらに大幅に改善された。
- 参考スコア(独自算出の注目度): 12.786824482430662
- License:
- Abstract: Survival prognosis is crucial for medical informatics. Practitioners often confront small-sized clinical data, especially cancer patient cases, which can be insufficient to induce useful patterns for survival predictions. This study deals with small sample survival analysis by leveraging transfer learning, a useful machine learning technique that can enhance the target analysis with related knowledge pre-learned from other data. We propose and develop various transfer learning methods designed for common survival models. For parametric models such as DeepSurv, Cox-CC (Cox-based neural networks), and DeepHit (end-to-end deep learning model), we apply standard transfer learning techniques like pretraining and fine-tuning. For non-parametric models such as Random Survival Forest, we propose a new transfer survival forest (TSF) model that transfers tree structures from source tasks and fine-tunes them with target data. We evaluated the transfer learning methods on colorectal cancer (CRC) prognosis. The source data are 27,379 SEER CRC stage I patients, and the target data are 728 CRC stage I patients from the West China Hospital. When enhanced by transfer learning, Cox-CC's $C^{td}$ value was boosted from 0.7868 to 0.8111, DeepHit's from 0.8085 to 0.8135, DeepSurv's from 0.7722 to 0.8043, and RSF's from 0.7940 to 0.8297 (the highest performance). All models trained with data as small as 50 demonstrated even more significant improvement. Conclusions: Therefore, the current survival models used for cancer prognosis can be enhanced and improved by properly designed transfer learning techniques. The source code used in this study is available at https://github.com/YonghaoZhao722/TSF.
- Abstract(参考訳): 生存予後は医療情報学にとって重要である。
実践者は小さな臨床データ、特にがん患者に直面することが多く、生存予測に有用なパターンを導き出すには不十分である。
本研究は,他データから事前学習した関連知識を用いて,対象分析を強化する機械学習技術であるトランスファーラーニングを活用することで,サンプルサバイバル分析を行う。
本研究では, 共通生存モデルのための様々な移動学習手法を提案し, 開発する。
DeepSurvやCox-CC(Coxベースのニューラルネットワーク)、DeepHit(エンドツーエンドのディープラーニングモデル)といったパラメトリックモデルに対しては、事前トレーニングや微調整といった標準的なトランスファー学習技術を適用します。
ランダムサバイバルフォレスト(Random Survival Forest)のような非パラメトリックモデルでは、ソースタスクからツリー構造を転送し、ターゲットデータでそれらを微調整する新しいトランスファーサバイバルフォレスト(TSF)モデルを提案する。
大腸癌(CRC)の予後に関する転写学習法について検討した。
ソースデータは27,379 SEER CRCステージIで,対象データは西中国病院の728 CRCステージIである。
Cox-CCの$C^{td}$値は、転送学習によって強化されると、0.7868から0.8111へ、DeepHitは0.8085から0.8135へ、DeepSurvは0.7722から0.8043へ、RCFは0.7940から0.8297(最高パフォーマンス)に引き上げられた。
データで50まで訓練されたすべてのモデルは、さらに大幅に改善された。
結論: がん予後のための現在の生存モデルは, 適切に設計された転写学習技術によって向上し, 改善することができる。
この研究で使用されたソースコードはhttps://github.com/YonghaoZhao722/TSFで公開されている。
関連論文リスト
- Brain Tumor Classification on MRI in Light of Molecular Markers [61.77272414423481]
1p/19q遺伝子の同時欠失は、低グレードグリオーマの臨床成績と関連している。
本研究の目的は,MRIを用いた畳み込みニューラルネットワークを脳がん検出に活用することである。
論文 参考訳(メタデータ) (2024-09-29T07:04:26Z) - Survival modeling using deep learning, machine learning and statistical methods: A comparative analysis for predicting mortality after hospital admission [9.719996519981333]
コックス比例ハザード(CoxPH)、ステップワイドコックスPH、弾性ネットペナル化コックスモデル、GBM学習など、いくつかの生存分析手法の比較研究を行った。
症例スタディとして,2017年から2019年にかけて,第3次病院救急外来で入院した患者の振り返り分析を行った。
C-indexの結果は、ディープラーニングが同等のパフォーマンスを達成し、DeepSurvが最高の差別を生み出していることを示している。
論文 参考訳(メタデータ) (2024-03-04T10:46:02Z) - Multitask Deep Learning for Accurate Risk Stratification and Prediction
of Next Steps for Coronary CT Angiography Patients [26.50934421749854]
リスク階層化と下流テスト選択を支援するマルチタスク深層学習モデルを提案する。
提案手法は,CADのリスク層化において0.76AUC,下流試験では0.72AUCの受信機動作特性を持つCurve(AUC)のエリアを達成した。
論文 参考訳(メタデータ) (2023-09-01T08:34:13Z) - Multimodal Deep Learning for Personalized Renal Cell Carcinoma
Prognosis: Integrating CT Imaging and Clinical Data [3.790959613880792]
腎細胞癌は生存率の低い重要な世界的な健康上の課題である。
本研究の目的は, 腎細胞癌患者の生存確率を予測できる包括的深層学習モデルを考案することであった。
提案フレームワークは,3次元画像特徴抽出器,臨床変数選択,生存予測の3つのモジュールから構成される。
論文 参考訳(メタデータ) (2023-07-07T13:09:07Z) - Supervised Machine Learning for Breast Cancer Risk Factors Analysis and
Survival Prediction [0.5249805590164902]
最も効果的な治療法の選択は、最終的には乳がん生存予測に影響されるかもしれない。
本研究では,1904年の患者記録を用いて5年間の乳癌生存を機械学習を用いて予測した。
論文 参考訳(メタデータ) (2023-04-13T12:32:14Z) - Learning Clinical Concepts for Predicting Risk of Progression to Severe
COVID-19 [17.781861866125023]
大手医療機関のデータを用いて、重度の新型コロナウイルスの進行を予測する生存モデルを開発する。
i) 利用可能なすべての特徴から構築された制約のないモデル,(ii) リスク予測器を訓練する前に少数の臨床概念を学習するパイプラインである。
論文 参考訳(メタデータ) (2022-08-28T02:59:35Z) - Building Brains: Subvolume Recombination for Data Augmentation in Large
Vessel Occlusion Detection [56.67577446132946]
この戦略をデータから学ぶためには、標準的なディープラーニングベースのモデルに対して、大規模なトレーニングデータセットが必要である。
そこで本研究では, 異なる患者から血管木セグメントを組換えることで, 人工的なトレーニングサンプルを生成する方法を提案する。
拡張スキームに則って,タスク固有の入力を入力した3D-DenseNetを用いて,半球間の比較を行う。
論文 参考訳(メタデータ) (2022-05-05T10:31:57Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
本稿では,新しいコントラスト型正規化臨床分類モデルを提案する。
EHRデータに特化した2つのユニークなポジティブサンプリング戦略を紹介します。
私たちのフレームワークは、現実世界のCOVID-19 EHRデータの死亡リスクを予測するために、競争の激しい実験結果をもたらします。
論文 参考訳(メタデータ) (2021-04-07T06:02:04Z) - Deep learning-based COVID-19 pneumonia classification using chest CT
images: model generalizability [54.86482395312936]
深層学習(DL)分類モデルは、異なる国の3DCTデータセット上で、COVID-19陽性患者を特定するために訓練された。
我々は、データセットと72%の列車、8%の検証、20%のテストデータを組み合わせたDLベースの9つの同一分類モデルを訓練した。
複数のデータセットでトレーニングされ、トレーニングに使用されるデータセットの1つからテストセットで評価されたモデルは、よりよいパフォーマンスを示した。
論文 参考訳(メタデータ) (2021-02-18T21:14:52Z) - Classification of COVID-19 in CT Scans using Multi-Source Transfer
Learning [91.3755431537592]
我々は,従来のトランスファー学習の改良にマルチソース・トランスファー・ラーニングを応用して,CTスキャンによる新型コロナウイルスの分類を提案する。
マルチソースファインチューニングアプローチでは、ImageNetで微調整されたベースラインモデルよりも優れています。
我々の最高のパフォーマンスモデルは、0.893の精度と0.897のリコールスコアを達成でき、ベースラインのリコールスコアを9.3%上回った。
論文 参考訳(メタデータ) (2020-09-22T11:53:06Z) - A Systematic Approach to Featurization for Cancer Drug Sensitivity
Predictions with Deep Learning [49.86828302591469]
35,000以上のニューラルネットワークモデルをトレーニングし、一般的な成果化技術を駆使しています。
RNA-seqは128以上のサブセットであっても非常に冗長で情報的であることがわかった。
論文 参考訳(メタデータ) (2020-04-30T20:42:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。