論文の概要: Unveiling the Potential of Spiking Dynamics in Graph Representation Learning through Spatial-Temporal Normalization and Coding Strategies
- arxiv url: http://arxiv.org/abs/2407.20508v1
- Date: Tue, 30 Jul 2024 02:53:26 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-31 18:28:58.121631
- Title: Unveiling the Potential of Spiking Dynamics in Graph Representation Learning through Spatial-Temporal Normalization and Coding Strategies
- Title(参考訳): 空間的時間正規化と符号化戦略によるグラフ表現学習におけるスパイキングダイナミクスの可能性
- Authors: Mingkun Xu, Huifeng Yin, Yujie Wu, Guoqi Li, Faqiang Liu, Jing Pei, Shuai Zhong, Lei Deng,
- Abstract要約: スパイキングニューラルネットワーク(SNN)は、ニューロンのエネルギー効率と事象駆動処理を再現する可能性から、かなりの関心を集めている。
本研究は,グラフ表現学習の強化におけるスパイキングダイナミクスの特質とメリットについて考察する。
スパイキングダイナミクスを取り入れたスパイクに基づくグラフニューラルネットワークモデルを提案し,新しい時空間特徴正規化(STFN)技術により強化した。
- 参考スコア(独自算出の注目度): 15.037300421748107
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, spiking neural networks (SNNs) have attracted substantial interest due to their potential to replicate the energy-efficient and event-driven processing of biological neurons. Despite this, the application of SNNs in graph representation learning, particularly for non-Euclidean data, remains underexplored, and the influence of spiking dynamics on graph learning is not yet fully understood. This work seeks to address these gaps by examining the unique properties and benefits of spiking dynamics in enhancing graph representation learning. We propose a spike-based graph neural network model that incorporates spiking dynamics, enhanced by a novel spatial-temporal feature normalization (STFN) technique, to improve training efficiency and model stability. Our detailed analysis explores the impact of rate coding and temporal coding on SNN performance, offering new insights into their advantages for deep graph networks and addressing challenges such as the oversmoothing problem. Experimental results demonstrate that our SNN models can achieve competitive performance with state-of-the-art graph neural networks (GNNs) while considerably reducing computational costs, highlighting the potential of SNNs for efficient neuromorphic computing applications in complex graph-based scenarios.
- Abstract(参考訳): 近年、スパイキングニューラルネットワーク(SNN)は、生物学的ニューロンのエネルギー効率と事象駆動処理を再現する可能性から、かなりの関心を集めている。
それにもかかわらず、グラフ表現学習におけるSNNの適用、特に非ユークリッドデータに対する適用は未定であり、グラフ学習に対するスパイクダイナミクスの影響はまだ完全には理解されていない。
この研究は、グラフ表現学習の強化におけるスパイキングダイナミクスのユニークな性質と利点を調べることによって、これらのギャップに対処することを目指している。
本稿では,新しい時空間特徴正規化(STFN)技術によって強化されたスパイキングダイナミクスを取り入れたスパイクベースのグラフニューラルネットワークモデルを提案する。
我々の詳細な分析では、レートコーディングとテンポラルコーディングがSNNのパフォーマンスに与える影響について検討し、ディープグラフネットワークのアドバンテージに関する新たな洞察を提供し、過度にスムースな問題のような課題に対処する。
実験により,我々のSNNモデルが最先端グラフニューラルネットワーク(GNN)と競合する性能を達成できることを示すとともに,計算コストを大幅に削減し,複雑なグラフベースシナリオにおける効率的なニューロモルフィックコンピューティング応用のためのSNNの可能性を明らかにする。
関連論文リスト
- Temporal Spiking Neural Networks with Synaptic Delay for Graph Reasoning [91.29876772547348]
スパイキングニューラルネットワーク(SNN)は、生物学的にインスパイアされたニューラルネットワークモデルとして研究されている。
本稿では,SNNがシナプス遅延と時間符号化とを併用すると,グラフ推論の実行(知識)に長けていることを明らかにする。
論文 参考訳(メタデータ) (2024-05-27T05:53:30Z) - Gradient Transformation: Towards Efficient and Model-Agnostic Unlearning for Dynamic Graph Neural Networks [66.70786325911124]
グラフアンラーニングは、ユーザのプライバシ保護と、望ましくないデータによるネガティブな影響軽減に不可欠なツールとして登場した。
DGNNの普及に伴い、動的グラフアンラーニングの実装を検討することが不可欠となる。
DGNNアンラーニングを実装するために,効率的,効率的,モデルに依存しない,事後処理手法を提案する。
論文 参考訳(メタデータ) (2024-05-23T10:26:18Z) - Continuous Spiking Graph Neural Networks [43.28609498855841]
連続グラフニューラルネットワーク(CGNN)は、既存の離散グラフニューラルネットワーク(GNN)を一般化する能力によって注目されている。
本稿では,2階ODEを用いたCOS-GNNの高次構造について紹介する。
我々は、COS-GNNが爆発や消滅の問題を効果的に軽減し、ノード間の長距離依存関係を捕捉できるという理論的証明を提供する。
論文 参考訳(メタデータ) (2024-04-02T12:36:40Z) - Enhancing Graph Representation Learning with Attention-Driven Spiking Neural Networks [5.627287101959473]
グラフ学習タスクのための従来のニューラルネットワークに代わる有望な代替手段として、スパイキングニューラルネットワーク(SNN)が登場している。
グラフ表現学習を改善するために,注意機構をSNNと統合した新しい手法を提案する。
論文 参考訳(メタデータ) (2024-03-25T12:15:10Z) - SiGNN: A Spike-induced Graph Neural Network for Dynamic Graph Representation Learning [42.716744098170835]
本研究では,動的グラフ上での時空間表現の強化を学習するための,スパイク誘発グラフニューラルネットワーク(SiGNN)という新しいフレームワークを提案する。
TA機構を利用して、SiGNNはSNNの時間的ダイナミクスを効果的に活用するだけでなく、スパイクのバイナリの性質によって課される表現的制約を積極的に回避する。
実世界の動的グラフデータセットに対する大規模な実験は、ノード分類タスクにおけるSiGNNの優れた性能を示す。
論文 参考訳(メタデータ) (2024-03-11T05:19:43Z) - Attentional Graph Neural Networks for Robust Massive Network
Localization [20.416879207269446]
グラフニューラルネットワーク(GNN)は、機械学習における分類タスクの顕著なツールとして登場した。
本稿では,GNNとアテンション機構を統合し,ネットワークローカライゼーションという難解な非線形回帰問題に対処する。
我々はまず,厳密な非視線(NLOS)条件下でも例外的な精度を示すグラフ畳み込みネットワーク(GCN)に基づく新しいネットワークローカライゼーション手法を提案する。
論文 参考訳(メタデータ) (2023-11-28T15:05:13Z) - Graph Neural Networks Provably Benefit from Structural Information: A
Feature Learning Perspective [53.999128831324576]
グラフニューラルネットワーク(GNN)は、グラフ表現学習の先駆けとなった。
本研究では,特徴学習理論の文脈におけるグラフ畳み込みの役割について検討する。
論文 参考訳(メタデータ) (2023-06-24T10:21:11Z) - A Hybrid Neural Coding Approach for Pattern Recognition with Spiking
Neural Networks [53.31941519245432]
脳にインスパイアされたスパイクニューラルネットワーク(SNN)は、パターン認識タスクを解く上で有望な能力を示している。
これらのSNNは、情報表現に一様神経コーディングを利用する同質ニューロンに基づいている。
本研究では、SNNアーキテクチャは異種符号化方式を組み込むよう、均質に設計されるべきである、と論じる。
論文 参考訳(メタデータ) (2023-05-26T02:52:12Z) - Transferability of coVariance Neural Networks and Application to
Interpretable Brain Age Prediction using Anatomical Features [119.45320143101381]
グラフ畳み込みネットワーク(GCN)は、トポロジー駆動のグラフ畳み込み演算を利用して、推論タスクのためにグラフをまたいだ情報を結合する。
我々は、共分散行列をグラフとして、共分散ニューラルネットワーク(VNN)の形でGCNを研究した。
VNNは、GCNからスケールフリーなデータ処理アーキテクチャを継承し、ここでは、共分散行列が極限オブジェクトに収束するデータセットに対して、VNNが性能の転送可能性を示すことを示す。
論文 参考訳(メタデータ) (2023-05-02T22:15:54Z) - Exploiting Spiking Dynamics with Spatial-temporal Feature Normalization
in Graph Learning [9.88508686848173]
内在的なダイナミクスを持つ生物学的スパイキングニューロンは、脳の強力な表現力と学習能力を持つ。
ユークリッド空間タスクを処理するためのスパイクニューラルネットワーク(SNN)の最近の進歩にもかかわらず、非ユークリッド空間データの処理においてSNNを活用することは依然として困難である。
本稿では,グラフ学習のためのSNNの直接学習を可能にする,一般的なスパイクに基づくモデリングフレームワークを提案する。
論文 参考訳(メタデータ) (2021-06-30T11:20:16Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
スパイキングニューラルネットワーク(SNN)は、時間的スパイクパターンを用いて情報を表現し、伝達する。
本稿では,情報符号化,シナプス可塑性,意思決定におけるスパイクタイミングダイナミクスの寄与について検討し,将来のDeepSNNやニューロモルフィックハードウェアシステムの設計への新たな視点を提供する。
論文 参考訳(メタデータ) (2020-03-26T11:13:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。