Using Geographic Location-based Public Health Features in Survival
Analysis
- URL: http://arxiv.org/abs/2304.07679v1
- Date: Sun, 16 Apr 2023 03:15:00 GMT
- Title: Using Geographic Location-based Public Health Features in Survival
Analysis
- Authors: Navid Seidi, Ardhendu Tripathy, Sajal K. Das
- Abstract summary: This paper proposes a complementary improvement to survival analysis models by incorporating public health statistics in the input features.
We show that including geographic location-based public health information results in a statistically significant improvement in the concordance index evaluated on the Surveillance, Epidemiology, and End Results (SEER) dataset.
Our results indicate the utility of geographic location-based public health features in survival analysis.
- Score: 12.424517746493553
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Time elapsed till an event of interest is often modeled using the survival
analysis methodology, which estimates a survival score based on the input
features. There is a resurgence of interest in developing more accurate
prediction models for time-to-event prediction in personalized healthcare using
modern tools such as neural networks. Higher quality features and more frequent
observations improve the predictions for a patient, however, the impact of
including a patient's geographic location-based public health statistics on
individual predictions has not been studied. This paper proposes a
complementary improvement to survival analysis models by incorporating public
health statistics in the input features. We show that including geographic
location-based public health information results in a statistically significant
improvement in the concordance index evaluated on the Surveillance,
Epidemiology, and End Results (SEER) dataset containing nationwide cancer
incidence data. The improvement holds for both the standard Cox proportional
hazards model and the state-of-the-art Deep Survival Machines model. Our
results indicate the utility of geographic location-based public health
features in survival analysis.
Related papers
- SurvCORN: Survival Analysis with Conditional Ordinal Ranking Neural Network [4.772480981435387]
We propose SurvCORN, a novel method utilizing conditional ordinal ranking networks to predict survival curves directly.
We also introduce SurvMAE, a metric designed to evaluate the accuracy of model predictions in estimating time-to-event outcomes.
arXiv Detail & Related papers (2024-09-30T03:01:25Z) - Interpretable Prediction and Feature Selection for Survival Analysis [18.987678432106563]
We present DyS (pronounced dice''), a new survival analysis model that achieves both strong discrimination and interpretability.
DyS is a feature-sparse Generalized Additive Model, combining feature selection and interpretable prediction into one model.
arXiv Detail & Related papers (2024-04-23T02:36:54Z) - Interpretable Survival Analysis for Heart Failure Risk Prediction [50.64739292687567]
We propose a novel survival analysis pipeline that is both interpretable and competitive with state-of-the-art survival models.
Our pipeline achieves state-of-the-art performance and provides interesting and novel insights about risk factors for heart failure.
arXiv Detail & Related papers (2023-10-24T02:56:05Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
This paper introduces a novel, end-to-end diffusion-based risk prediction model, named MedDiffusion.
It enhances risk prediction performance by creating synthetic patient data during training to enlarge sample space.
It discerns hidden relationships between patient visits using a step-wise attention mechanism, enabling the model to automatically retain the most vital information for generating high-quality data.
arXiv Detail & Related papers (2023-10-04T01:36:30Z) - Data-Centric Epidemic Forecasting: A Survey [56.99209141838794]
This survey delves into various data-driven methodological and practical advancements.
We enumerate the large number of epidemiological datasets and novel data streams that are relevant to epidemic forecasting.
We also discuss experiences and challenges that arise in real-world deployment of these forecasting systems.
arXiv Detail & Related papers (2022-07-19T16:15:11Z) - Predicting Patient Readmission Risk from Medical Text via Knowledge
Graph Enhanced Multiview Graph Convolution [67.72545656557858]
We propose a new method that uses medical text of Electronic Health Records for prediction.
We represent discharge summaries of patients with multiview graphs enhanced by an external knowledge graph.
Experimental results prove the effectiveness of our method, yielding state-of-the-art performance.
arXiv Detail & Related papers (2021-12-19T01:45:57Z) - Dynamic prediction of time to event with survival curves [3.9169188005935927]
We apply our recently developed counterfactual dynamic survival model (CDSM) to static and longitudinal observational data.
We prove that the inflection point of its estimated individual survival curves provides reliable prediction of the patient failure time.
arXiv Detail & Related papers (2021-01-26T12:17:27Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
We present UNcertaInTy-based hEalth risk prediction (UNITE) model.
UNITE provides accurate disease risk prediction and uncertainty estimation leveraging multi-sourced health data.
We evaluate UNITE on real-world disease risk prediction tasks: nonalcoholic fatty liver disease (NASH) and Alzheimer's disease (AD)
UNITE achieves up to 0.841 in F1 score for AD detection, up to 0.609 in PR-AUC for NASH detection, and outperforms various state-of-the-art baselines by up to $19%$ over the best baseline.
arXiv Detail & Related papers (2020-10-22T02:28:11Z) - Survival Cluster Analysis [93.50540270973927]
There is an unmet need in survival analysis for identifying subpopulations with distinct risk profiles.
An approach that addresses this need is likely to improve characterization of individual outcomes.
arXiv Detail & Related papers (2020-02-29T22:41:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.