論文の概要: Implementing Responsible AI: Tensions and Trade-Offs Between Ethics
Aspects
- arxiv url: http://arxiv.org/abs/2304.08275v1
- Date: Mon, 17 Apr 2023 13:43:13 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-18 15:09:03.977665
- Title: Implementing Responsible AI: Tensions and Trade-Offs Between Ethics
Aspects
- Title(参考訳): 責任あるAIを実装する:倫理的側面の緊張とトレードオフ
- Authors: Conrad Sanderson, David Douglas, Qinghua Lu
- Abstract要約: 我々は、多種多様な文献にまたがるサポートに焦点をあてて、双方向のインタラクションに焦点をあてる。
このカタログは、倫理原則の側面間の相互作用の可能性の認識を高めるのに役立つ。
- 参考スコア(独自算出の注目度): 17.240779916169537
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Many sets of ethics principles for responsible AI have been proposed to allay
concerns about misuse and abuse of AI/ML systems. The underlying aspects of
such sets of principles include privacy, accuracy, fairness, robustness,
explainability, and transparency. However, there are potential tensions between
these aspects that pose difficulties for AI/ML developers seeking to follow
these principles. For example, increasing the accuracy of an AI/ML system may
reduce its explainability. As part of the ongoing effort to operationalise the
principles into practice, in this work we compile and discuss a catalogue of 10
notable tensions, trade-offs and other interactions between the underlying
aspects. We primarily focus on two-sided interactions, drawing on support
spread across a diverse literature. This catalogue can be helpful in raising
awareness of the possible interactions between aspects of ethics principles, as
well as facilitating well-supported judgements by the designers and developers
of AI/ML systems.
- Abstract(参考訳): 責任あるAIに対する多くの倫理原則が、AI/MLシステムの誤用と悪用に関する懸念を和らげるために提案されている。
このような原則の基本的な側面は、プライバシー、正確性、公正性、堅牢性、説明可能性、透明性である。
しかし、これらの側面の間には潜在的な緊張関係があり、これらの原則に従おうとするAI/ML開発者には困難をもたらしている。
例えば、AI/MLシステムの精度を高めることで、その説明可能性を減らすことができる。
この作業では、原則を実践するための継続的な取り組みの一環として、10の顕著な緊張、トレードオフ、および基盤となる側面の間のその他の相互作用のカタログをまとめ、議論します。
主に双方向の対話に焦点を合わせ、さまざまな文献にまたがるサポートを描いています。
このカタログは、倫理原則の側面間の相互作用の認識を高めるとともに、AI/MLシステムのデザイナと開発者による十分に支持された判断を促進するのに役立つ。
関連論文リスト
- Using AI Alignment Theory to understand the potential pitfalls of regulatory frameworks [55.2480439325792]
本稿では、欧州連合の人工知能法(EU AI法)を批判的に検討する。
人工知能における技術的アライメントの潜在的な落とし穴に焦点を当てたアライメント理論(AT)研究からの洞察を利用する。
これらの概念をEU AI Actに適用すると、潜在的な脆弱性と規制を改善するための領域が明らかになる。
論文 参考訳(メタデータ) (2024-10-10T17:38:38Z) - Crossing the principle-practice gap in AI ethics with ethical problem-solving [0.0]
AI開発の技術的側面から倫理的言説を分離する原則-実践的ギャップを埋めるには、依然として未解決の問題である。
EPSは、責任、人間中心、価値指向のAI開発を促進する方法論である。
EPSを青写真として利用し、Ethics as a Service Platformの実装を提案します。
論文 参考訳(メタデータ) (2024-04-16T14:35:13Z) - Resolving Ethics Trade-offs in Implementing Responsible AI [18.894725256708128]
初歩的なものから複雑なものまで、トレードオフを通じて緊張に対処するための5つのアプローチをカバーします。
いずれのアプローチも、すべての組織、システム、アプリケーションに適していない可能性が高い。
i)緊張の積極的な識別、(ii)倫理的側面の優先順位付けと重み付け、(iii)トレードオフ決定の正当化と文書化からなる枠組みを提案する。
論文 参考訳(メタデータ) (2024-01-16T04:14:23Z) - Towards Responsible AI in Banking: Addressing Bias for Fair
Decision-Making [69.44075077934914]
責任AI(Responsible AI)は、企業文化の発展におけるバイアスに対処する重要な性質を強調している。
この論文は、バイアスを理解すること、バイアスを緩和すること、バイアスを説明することの3つの基本的な柱に基づいて構成されている。
オープンソースの原則に従って、アクセス可能なPythonパッケージとして、Bias On DemandとFairViewをリリースしました。
論文 参考訳(メタデータ) (2024-01-13T14:07:09Z) - Survey on AI Ethics: A Socio-technical Perspective [0.9374652839580183]
AIに関連する倫理的懸念には、公正性、プライバシとデータ保護、責任と説明責任、安全性と堅牢性、透明性と説明可能性、環境への影響といった課題が含まれている。
この研究は、AIを社会に展開する際の現在と将来の倫理的懸念を統一する。
論文 参考訳(メタデータ) (2023-11-28T21:00:56Z) - Fairness in Agreement With European Values: An Interdisciplinary
Perspective on AI Regulation [61.77881142275982]
この学際的立場の論文は、AIにおける公平性と差別に関する様々な懸念を考察し、AI規制がそれらにどう対処するかについて議論する。
私たちはまず、法律、(AI)産業、社会技術、そして(道徳)哲学のレンズを通して、AIと公正性に注目し、様々な視点を提示します。
我々は、AI公正性の懸念の観点から、AI法の取り組みを成功に導くために、AIレギュレーションが果たす役割を特定し、提案する。
論文 参考訳(メタデータ) (2022-06-08T12:32:08Z) - The Different Faces of AI Ethics Across the World: A
Principle-Implementation Gap Analysis [12.031113181911627]
人工知能(AI)は、医療、宇宙探査、銀行、金融といった分野で、私たちの日常生活を変えつつある。
こうしたAIの急速な進歩は、AI技術が社会に与える影響に対する関心を高めている。
いくつかの倫理的原則は政府、国家、国際機関によって公表されている。
これらの原則は、AIの倫理的開発、デプロイメント、ガバナンスを導くための、ハイレベルな規範を概説している。
論文 参考訳(メタデータ) (2022-05-12T22:41:08Z) - Transparency, Compliance, And Contestability When Code Is(n't) Law [91.85674537754346]
技術的なセキュリティ機構と法的なプロセスの両方が、一連の規範に従って誤った行動を扱うメカニズムとして機能する。
彼らは一般的な類似点を共有しているが、どう定義されているか、行動し、被験者に与える影響にも明確な違いがある。
本稿では,両機構の類似点と相違点を,誤動作の対処方法として考察する。
論文 参考訳(メタデータ) (2022-05-08T18:03:07Z) - Ethics of AI: A Systematic Literature Review of Principles and
Challenges [3.7129018407842445]
透明性、プライバシ、説明責任、公正性は、最も一般的なAI倫理原則として識別される。
倫理的知識の欠如と曖昧な原則は、AIにおける倫理を考える上で重要な課題として報告されている。
論文 参考訳(メタデータ) (2021-09-12T15:33:43Z) - Case Study: Deontological Ethics in NLP [119.53038547411062]
我々はNLPの観点から1つの倫理理論、すなわち非オントロジー的倫理について研究する。
特に、インフォームド・コンセントを通じて、一般化原則と自律性への敬意に焦点を当てる。
NLPシステムでこれらの原則をどのように利用できるかを示すための4つのケーススタディを提供する。
論文 参考訳(メタデータ) (2020-10-09T16:04:51Z) - On the Morality of Artificial Intelligence [154.69452301122175]
本稿では,機械学習の研究・展開に関する概念的かつ実践的な原則とガイドラインを提案する。
我々は,より倫理的で道徳的なMLの実践を追求するために,実践者が採る具体的な行動を主張している。
論文 参考訳(メタデータ) (2019-12-26T23:06:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。