論文の概要: Comparing a classical and quantum one round algorithm on LocalMaxCut
- arxiv url: http://arxiv.org/abs/2304.08420v1
- Date: Mon, 17 Apr 2023 16:42:05 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-18 14:24:10.823325
- Title: Comparing a classical and quantum one round algorithm on LocalMaxCut
- Title(参考訳): LocalMaxCut上の古典的および量子的1ラウンドアルゴリズムの比較
- Authors: Charlie Carlson, Zackary Jorquera, Alexandra Kolla, Steven Kordonowy
- Abstract要約: 量子最適化近似アルゴリズム(QAOA)は、次数3グラフ上の古典的手法に匹敵する計算上の優位性を持つ。
結果として、最先端の量子ハードウェアに関係している小規模量子計算でさえ、比較可能な単純な古典よりも大きな優位性を持つ可能性が示唆された。
- 参考スコア(独自算出の注目度): 63.060664749060805
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: We compare the performance of a quantum local algorithm to a similar
classical counterpart on a well-established combinatorial optimization problem
LocalMaxCut. We show that a popular quantum algorithm first discovered by
Farhi, Goldstone, and Gutmannn [1] called the quantum optimization
approximation algorithm (QAOA) has a computational advantage over comparable
local classical techniques on degree-3 graphs. These results hint that even
small-scale quantum computation, which is relevant to the current state-of the
art quantum hardware, could have significant advantages over comparably simple
classical computation.
- Abstract(参考訳): 量子局所アルゴリズムの性能を、よく確立された組合せ最適化問題LocalMaxCut上で、類似の古典的アルゴリズムと比較する。
量子最適化近似アルゴリズム (qaoa) と呼ばれる、farhi, goldstone, gutmannn [1] によって最初に発見された一般的な量子アルゴリズムは、次数-3グラフ上の比較可能な局所的手法よりも計算上優れていることが示されている。
これらの結果は、最先端の量子ハードウェアに関連する小さな量子計算であっても、比較可能な単純な古典計算よりも大きな利点があることを示唆している。
関連論文リスト
- Hybrid Quantum-Classical Multilevel Approach for Maximum Cuts on Graphs [1.7720089167719628]
我々は、Max-Cutの大規模インスタンスを解決するために、スケーラブルなハイブリッドマルチレベルアプローチを導入する。
フレームワークでのQAOAの使用は、古典的なアプローチに匹敵するものであることを示す。
論文 参考訳(メタデータ) (2023-09-15T23:54:46Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
単一画像超解像(SISR)問題を解くために,量子コンピューティングに基づくアルゴリズムを提案する。
提案したAQCアルゴリズムは、SISRの精度を維持しつつ、古典的なアナログよりも向上したスピードアップを実現する。
論文 参考訳(メタデータ) (2023-04-18T11:57:15Z) - Quantum Clustering with k-Means: a Hybrid Approach [117.4705494502186]
我々は3つのハイブリッド量子k-Meansアルゴリズムを設計、実装、評価する。
我々は距離の計算を高速化するために量子現象を利用する。
我々は、我々のハイブリッド量子k-平均アルゴリズムが古典的バージョンよりも効率的であることを示す。
論文 参考訳(メタデータ) (2022-12-13T16:04:16Z) - Entanglement and coherence in Bernstein-Vazirani algorithm [58.720142291102135]
Bernstein-Vaziraniアルゴリズムは、オラクルに符号化されたビット文字列を決定できる。
我々はベルンシュタイン・ヴァジラニアルゴリズムの量子資源を詳細に分析する。
絡み合いがない場合、初期状態における量子コヒーレンス量とアルゴリズムの性能が直接関係していることが示される。
論文 参考訳(メタデータ) (2022-05-26T20:32:36Z) - Quantum version of the k-NN classifier based on a quantum sorting
algorithm [0.0]
我々はk-nearest neighbors(k-NN)として知られる古典的機械学習アルゴリズムの新しい量子バージョンを開発する。
この新しいk-NNアルゴリズムの効率性と性能は、Schuldらによって提案された古典的なk-NNと他の量子バージョンと比較される。
論文 参考訳(メタデータ) (2022-04-07T22:31:01Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
マルチバスグラフ複雑性と非線形活性化関数の2つの革新の恩恵を受ける新しい変分量子アルゴリズムを導入する。
その結果,最適化性能が向上し,有効景観が2つ向上し,測定の進歩が減少した。
論文 参考訳(メタデータ) (2021-06-24T20:16:02Z) - Accelerating variational quantum algorithms with multiple quantum
processors [78.36566711543476]
変分量子アルゴリズム(VQA)は、特定の計算上の利点を得るために、短期量子マシンを利用する可能性がある。
現代のVQAは、巨大なデータを扱うために単独の量子プロセッサを使用するという伝統によって妨げられている、計算上のオーバーヘッドに悩まされている。
ここでは、この問題に対処するため、効率的な分散最適化手法であるQUDIOを考案する。
論文 参考訳(メタデータ) (2021-06-24T08:18:42Z) - Progress toward favorable landscapes in quantum combinatorial
optimization [0.0]
アルゴリズム最適化問題 MaxCut の解法に着目する。
古典的な最適化ランドスケープの構造は、MaxCut関数を評価するために使用される量子回路とどのように関係するかを考察する。
論文 参考訳(メタデータ) (2021-05-03T18:38:53Z) - Quantum algorithmic differentiation [0.0]
本稿では,量子コンピューティングの文脈でアルゴリズムの微分を行うアルゴリズムを提案する。
アルゴリズムの2つのバージョンを提示する。1つは完全量子であり、もう1つは古典的なステップを雇用する。
論文 参考訳(メタデータ) (2020-06-23T22:52:22Z) - To quantum or not to quantum: towards algorithm selection in near-term
quantum optimization [0.0]
本稿では,QAOAが従来のアルゴリズムよりも有利になる確率の高い問題事例を検出する問題について検討する。
クロスバリデーションの精度は96%以上で、実用的な優位性が得られる。
論文 参考訳(メタデータ) (2020-01-22T20:42:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。